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Juegos matemáticos
por Natalie Wolchover

Así funciona el teorema de Gödel
Los teoremas de incompletitud de Kurt Gödel acabaron con la búsqueda de una 
teoría matemática del todo. Noventa años después, seguimos tratando de entender 
sus consecuencias

 E n 1931, el lógico austriaco Kurt Gö-
del llevó a cabo el que probablemen-

te podamos calificar como uno de los lo-
gros intelectuales más asombrosos de la 
historia. Por aquel entonces, los matemá-
ticos se habían lanzado a buscar los fun-
damentos de su disciplina: un conjunto de 
hechos matemáticos básicos, o axiomas, 
que fueran al mismo tiempo coherentes 
(que nunca condujeran a contradicciones) 
y completos (es decir, a partir de los cua-

les pudieran construirse todas las verda-
des matemáticas).

Sus teoremas de incompletitud, pu-
blicados cuando contaba solo 25 años, 
frustraron ese sueño. Gödel demostró 
que cualquier conjunto de axiomas que 
podamos postular como base de las 
matemáticas será irremediablemente 
incompleto: siempre habrá hechos ver-
daderos sobre los números que jamás 
podremos demostrar a partir de esos 

axiomas. Además, Gödel también probó 
que ninguno de esos conjuntos de axio-
mas podría demostrar jamás su propia 
coherencia.

Los teoremas de incompletitud impli-
can que no puede existir una teoría ma-
temática del todo; ninguna unificación de 
lo que es demostrable y lo que es cierto. Lo 
que los matemáticos puedan demostrar 
dependerá siempre de los supuestos de los 
que partan, no de una verdad fundamen-

EN 1931,� Kurt Gödel demostró que todo sistema matemático contendrá afirmaciones imposibles de demostrar.
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tal a partir de la cual emanen 
todas las respuestas.

En los noventa años trans-
curridos desde el hallazgo 
de Gödel, los matemáticos 
se han topado con el tipo de 
preguntas sin respuesta que 
pronosticaban sus teoremas 
de incompletitud. Por ejemplo, 
el propio Gödel contribuyó a 
establecer que la hipótesis del 
continuo, relativa a los tama-
ños del infinito, era indecidi-
ble. Lo mismo ocurre con el 
problema de la parada, o la 
pregunta de si un programa 
informático que recibe una 
entrada aleatoria continuará 
calculando para siempre o 
acabará deteniéndose antes o 
después.

Las cuestiones indecidibles 
han aparecido incluso en físi-
ca, lo que parece indicar que 
la incompletitud de Gödel no 
solo se circunscribe al mun-
do de las matemáticas puras, 
sino que, de algún modo que 
no acabamos de entender, afectaría tam-
bién a la propia realidad. Lo que sigue es 
un resumen simplificado e informal de 
los argumentos que empleó Gödel para 
demostrar sus teoremas.

La numeración de Gödel
La estrategia clave de Gödel fue encon-
trar una manera para expresar las afir-
maciones sobre un sistema de axiomas en 
términos de las afirmaciones contenidas 
en dicho sistema; esto es, en términos 
de afirmaciones relativas a los números. 
Esta correspondencia permite que un sis-
tema de axiomas «hable» sobre sí mis-
mo. Para ello, el primer paso consiste en 
asignar un número único, denominado 
«número de Gödel», a cualquier posible 
enunciado o serie de enunciados mate-
máticos.

En 1958, Ernest Nagel y James New-
man presentaron una versión ligeramente 
modificada de dicho esquema en su libro 
El teorema de Gödel. Esta comienza con 
12 símbolos elementales que sirven como 
vocabulario para expresar un conjunto de 
axiomas básicos. Por ejemplo, la afirma-
ción de que algo existe puede expresarse 
mediante el símbolo ∃, mientras que la 
suma se denota mediante +. Un símbolo 
importante es s, que significa «sucesor 
de» y ofrece una manera de especificar 
los números: ss0, por ejemplo, hace refe-

rencia al número 2. A estos 12 símbolos 
se les asignan los números de Gödel del 1 
al 12 (véase la tabla adjunta).

A continuación, las letras que repre-
sentan variables, como X, Y o Z, se aso-
cian a los números primos mayores que 
12 (13, 17, 19, etcétera). A partir de aquí, 
es posible asignar un número de Gödel 
propio a cualquier combinación de sím-
bolos y variables; es decir, a toda fórmula 
o secuencia de fórmulas aritméticas que 
podamos construir.

Para verlo, consideremos la fórmula 
0 = 0. Los tres símbolos que aparecen 
en ella tienen asociados los números de 
Gödel 6, 5 y 6, respectivamente. Ahora 
hemos de convertir esta secuencia de tres 
números en uno solo. Este deberá además 
ser único, en el sentido de que ninguna 
otra secuencia de símbolos pueda gene-
rarlo. Para ello, tomamos los tres prime-
ros números primos (2, 3 y 5), elevamos 
cada uno de ellos al número de Gödel del 
símbolo que ocupa la misma posición en 
la secuencia, y por último los multiplica-
mos. De esta manera, 0 = 0 se convierte 
en 26 × 35 × 56, o 243.000.000.

La correspondencia funciona porque 
dos fórmulas distintas nunca podrán ge-
nerar el mismo número de Gödel. Todos 
los números de Gödel son enteros, y solo 
existe una forma de descomponer un nú-
mero entero en factores primos. La úni-

ca descomposición en factores 
primos de 243.000.000 es 26 
× 35 × 56, lo que significa que 
solo hay una manera posible 
de descodificar este número de 
Gödel: la fórmula 0 = 0.

Gödel fue un paso más allá. 
Dado que una demostración 
matemática consta de una se-
cuencia ordenada de fórmulas, 
definió también una manera 
de asociar un número de Gö-
del único a cada una de esas 
secuencias. A tal fin, comenza-
mos una vez más con la lista de 
números primos: 2, 3, 5... Lue-
go elevamos cada uno al núme-
ro de Gödel de la fórmula que 
ocupa la misma posición en la 
secuencia (por ejemplo, si 0 = 
0 aparece en primer lugar, es-
cribiremos 2243.000.000 × ···), y por 
último lo multiplicamos todo.

Aritmetizar 
la metamatemática
La gran ventaja de este pro-
cedimiento es que incluso los 

enunciados metamatemáticos, aquellos 
que versan sobre las fórmulas aritméticas 
mismas, pueden traducirse en fórmulas 
con sus propios números de Gödel.

Empecemos considerando la fórmula 
∼(0 = 0), que significa «cero no es igual 
a cero». Esta fórmula es claramente falsa, 
pero aun así tiene un número de Gödel: 
2 elevado a 1 (el número de Gödel del 
símbolo ∼), multiplicado por 3 elevado 
a 8 (el número de Gödel del paréntesis 
de apertura), etcétera. El proceso nos da 
como resultado 21 × 38 × 56 × 75 × 116 × 
139. Dado que es posible generar números 
de Gödel para todas las fórmulas, aunque 
sean falsas, podemos decir cosas sobre 
ellas a partir de sus respectivos números 
de Gödel.

Consideremos la afirmación «el pri-
mer símbolo de la fórmula ∼(0 = 0) es 
una tilde». Este enunciado metamatemá-
tico (verdadero) sobre ∼(0 = 0) puede tra-
ducirse en un enunciado sobre el número 
de Gödel asociado a la fórmula: a saber, 
que su primer exponente es 1 (el núme-
ro de Gödel asociado a la tilde). En otras 
palabras, nuestra afirmación dice que el 
número 21 × 38 × 56 × 75 × 116 × 139 solo 
tiene un factor 2. Si ∼(0 = 0) empezara 
con cualquier otro símbolo que no fuera 
una tilde, su número de Gödel tendría al 
menos dos factores 2. Así que, siendo más 
precisos, lo que queremos decir es que 2 

NÚMEROS DE GÖDEL� asociados a un conjunto de símbolos 
básicos empleados para formular enunciados matemáticos.

Signo

~

∨ 2 o

⊃ 3 implica

∃ 4 existe

1 no

= 5 es igual a

0 6 cero

s 7 el sucesor de

( 8 signo de puntuación

) 9 signo de puntuación

, 10 signo de puntuación

+ 11 más

× 12 por

Número de Gödel Significado
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es un factor de 21 × 38 × 56 × 75 × 116 × 
139, pero 22 no lo es.

De igual modo, también podemos con-
vertir la última frase en una expresión 
aritmética precisa («existe un número 
entero X tal que X multiplicado por 2 es 
igual a 21 × 38 × 56 × 75 × 116 × 139, y no 
existe ningún entero X tal que X multi-
plicado por 4 sea igual a 21 × 38 × 56 × 75 
× 116 × 139») y escribirla mediante sím-
bolos elementales. Y por supuesto, dicha 
fórmula tendrá también un número de 
Gödel, el cual podremos calcular trans-
formando sus símbolos en potencias de 
números primos.

Este ejemplo, escribieron Nagel y 
Newman, «ilustra una idea muy general 
y profunda que constituye el núcleo del 
descubrimiento de Gödel: es posible ha-
blar, de un modo indirecto pero perfecta-
mente preciso, sobre las propiedades tipo-
gráficas de una larga cadena de símbolos 
analizando, en su lugar, las propiedades 
de la descomposición en factores primos 
de un número entero grande».

También podemos convertir en símbo-
los el enunciado metamatemático «existe 
una secuencia de fórmulas con número 
de Gödel X que demuestra la fórmula 
con número de Gödel K». O, de mane-
ra más sucinta, «es posible demostrar la 
fórmula con número de Gödel K». Fue la 
posibilidad de «aritmetizar» este tipo de 
enunciados lo que abrió las puertas a los 
teoremas de incompletitud.

G habla sobre G
Fue aquí donde Gödel tuvo una idea bri-
llante. Se percató de que podía tomar el 
número de Gödel de una fórmula y susti-
tuirlo en la propia fórmula.

Para entender cómo funciona esta 
sustitución, consideremos la fórmula 
(∃X)(X = sY), que significa «existe algu-
na variable X que es el sucesor de Y»; o, 
en pocas palabras, «Y tiene un sucesor». 
Como todas las fórmulas, esta posee un 
número de Gödel: algún número entero 
grande al que llamaremos M.

Ahora, tomemos la fórmula de par-
tida y sustituyamos el símbolo Y por M. 
Esto genera una nueva fórmula, (∃X)
(X = sM), que significa «M tiene un su-
cesor». ¿Cómo podemos llamar al núme-
ro de Gödel de esta expresión? Hay que 
reflejar tres cosas: hemos empezado con 
la fórmula que tiene número de Gödel 
M; en ella, hemos sustituido el símbolo 
Y por M; y, de acuerdo con el esquema 
de asignación que hemos introducido al 
principio, el símbolo Y es el que tiene nú-

mero de Gödel 17. Así pues, designemos 
el número de Gödel de la nueva fórmula 
como sust(M, M, 17). Este tipo de sustitu-
ción encierra el quid de la demostración 
de Gödel.

Gödel consideró un enunciado me-
tamatemático del tipo «la fórmula con 
número de Gödel sust(Y, Y, 17) no se 
puede demostrar». De acuerdo con la 
notación que acabamos de introducir, 
la fórmula con número de Gödel sust(Y, 
Y, 17) es la que se obtiene al tomar la 
fórmula con número de Gödel Y (una va-
riable desconocida) y, en cualquier lugar 
donde aparezca el símbolo con número 
de Gödel 17 (es decir, en cualquier lugar 
donde haya una Y), reemplazarlo por di-
cha variable Y.

La cosa está empezando a complicar-
se, pero lo que es seguro es que nuestra 
afirmación metamatemática «la fórmula 
con número de Gödel sust(Y, Y, 17) no 
se puede demostrar» se traduce en una 
fórmula con un número de Gödel único. 
Llamémoslo N.

Hagamos ahora una última sustitu-
ción: Gödel creó una nueva fórmula in-
sertando el número N en cualquier lugar 

donde hubiera una Y en la fórmula ante-
rior. Esa nueva fórmula dice «la fórmula 
con número de Gödel sust(N, N, 17) no 
se puede demostrar». Llamemos G a esta 
última fórmula.

Por supuesto, G tiene un número de 
Gödel. ¿Cuál es? He aquí la sorpresa: 
dicho número de Gödel solo puede ser 
sust(N, N, 17). Por definición, sust(N, N, 
17) es el número de Gödel de la fórmula 
que resulta de tomar la fórmula con nú-
mero de Gödel N y, en cualquier lugar 
donde haya un símbolo con número 
de Gödel 17, reemplazarlo por N. ¡Y esa 
fórmula resultante es justo G! Debido a la 
unicidad de la descomposición en factores 
primos, ahora vemos que la fórmula de 
la que habla G no es sino la propia G. Y 
G está afirmando sobre sí misma que es 
indemostrable.

Pero ¿es posible demostrar G? Si así 
fuera, querría decir que hay alguna se-
cuencia de fórmulas que demuestra la 
fórmula con número de Gödel sust(N, N, 
17). Pero eso es lo contrario de lo que afir-
ma G, que nos asegura que no existe tal 
demostración. En un sistema coherente 
de axiomas, no es posible que dos enun-
ciados opuestos, G y ∼G, sean ambos ver-
daderos. Por tanto, la verdad de G solo 
puede ser indecidible.

Sin embargo, aunque G sea indecidi-
ble, está claro que es cierta. G afirma que 
«la fórmula con número de Gödel sust(N, 
N, 17) no se puede demostrar». ¡Y eso es 
justamente lo que hemos hallado! Dado 
que G es verdadera pero indecidible den-
tro del sistema de axiomas que hemos 
usado para construirla, dicho sistema es 
necesariamente incompleto.

Cabe pensar que tal vez podríamos 
postular algún axioma adicional, usarlo 
para demostrar G y resolver la paradoja. 
Sin embargo, algo así no es posible. Gö-
del demostró que, siguiendo un esquema 
similar al que acabamos de emplear, ese 
sistema extendido de axiomas permitiría 
construir una nueva fórmula verdadera, 
G', la cual no podría demostrarse dentro 
del nuevo sistema extendido. Así pues, 
todo intento de obtener un sistema ma-
temático completo será siempre como una 
pescadilla que se muerde la cola.

El segundo teorema
Hemos visto que, si un conjunto de axio-
mas es coherente, entonces es incompleto. 
Este es el primer teorema de Gödel. El se-
gundo —que ningún conjunto de axiomas 
puede demostrar su propia coherencia— 
puede deducirse fácilmente a partir de él.

KURT GÖDEL� durante su época de 
estudiante en Viena. Gödel publicó sus 

teoremas de incompletitud cuando contaba 
25 años, justo después de finalizar 

su doctorado.
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¿Qué significaría que un conjunto de 
axiomas pudiera demostrar que nunca 
conduce a una contradicción? Querría 
decir que existe una secuencia de fórmu-
las construida a partir de esos axiomas 
que demuestra la fórmula que, desde 
un punto de vista metamatemático, dice 
«este conjunto de axiomas es coherente». 
Por el primer teorema, ese conjunto de 
axiomas sería entonces necesariamente 
incompleto.

Pero «el conjunto de axiomas es in-
completo» es lo mismo que decir «existe 
alguna fórmula verdadera que no se pue-
de demostrar». Esta afirmación es equi-
valente a nuestra fórmula G. Y sabemos 
que los axiomas no pueden demostrar G.

Así que Gödel construyó una demos-
tración por contradicción: si un conjunto 
de axiomas pudiera demostrar su propia 
coherencia, entonces seríamos capaces de 
demostrar G. Pero no podemos, de modo 
que ningún conjunto de axiomas puede 
demostrar su propia coherencia.

Los teoremas de Gödel acabaron con 
la búsqueda de un sistema matemático 
coherente y completo. El significado de 
la incompletitud «sigue sin comprenderse 
del todo», escribieron Nagel y Newman 
en 1958. Hoy en día, eso continúa siendo 
cierto.
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