
1

Hoss- Versión: -7
01/10/2024

-*- coding: utf-8 -*-

"""

Created on Sábado 24/06/2024

ph_principal.py

HOSS (Human Organizations Simulation Start)

José Quintás Alonso

@author: invat

"""

import mysql.connector

import ph_herramientas

import ph_pantallasES

import ph_sociedad

import ph_ERED

import ph_seleDist

import ph_salidas

import random

from sinfo import sinfo

import warnings

warnings.filterwarnings('ignore')

#estructuras globales. Inicializar variables

#nombrePh tiene como clave el id y como valor el puntero al objeto nacido

nombrePh={}

2

#nombreOrg tiene como clave el id y como valor el puntero al objeto Organizacion creada

nombreOrg={}

datosIniciales=[] #Poblacion Inicial, año de inicio, etc...

datosReprPoblPib={} #iteracion,Poblacion, Nacimientos, defunciones, PIB

tiempo=1 #tiempo Global,tiempoabsoluto, en todo caso, comenzará por UNO: Poblacion
inicial

#Diccionario individual que se guarda en tabla MySQL, puede cambiar anualmente

miDicActividades={1:'Comer',2:'Pareja',3:'Hijos',4:'Descanso',5:'Sexo',6:'Salud',7:'Amistad',
8:'Estudio',\

 9:'Preparar oficio',10:'Redes sociales',11:'Vestirte',12:'Casa',13:'Coche',\

 14:'Milit pol-sindi',15:'Deporte',16:'Adicciones', 17:'Escribir leer',18:'Asac recreati',\

 19:'Satis Curiosid',20:'Jugar Azar',21:'Familia',22:'Manualidades',23:'Militancia
ONG',24:' Arte Ciencia',\

 25:'Viajar Emigrar', 26:'Seguir la moda',27:'Ejercer poder',28:'Investigar',\

 29:'Emprender',30:'Deporte riesgo',31:'Lider público',32:'Espiritualidad',33:'Estudios
medios',34:'Estudios superiores'}

diccioArquet={'amigo':[7,16],'cuidador':[23] ,'explorador':[25] ,'heroe':[15,30] ,\

 'inocente':[26] ,'rebelde':[14] ,'sabio': [19],'gobernante':[27,31],\

 'creador':[17,24,28] ,'bufon':[18],'mago':[8,29],'amante':[5]}

#Diccionario individual que se guarda en tabla MySQL y da su Arquetipo y Caracter de
gestación

miDicPhBasi={'amigo':0,'cuidador':0 ,'explorador':0 ,'heroe':0 , 'amante':0 ,\

 'inocente':0 ,'rebelde':0 ,'sabio':0,'gobernante':0,'creador':0 ,'bufon':0,'mago':0, \

 'arquetipo1':0,'arquetipo2':0, 'caracter1':0,'caracter2':0 }

miDicPhBasiModelo = {'amigo':0,'cuidador':0 ,'explorador':0 ,'heroe':0 , 'amante':0 ,\

3

 'inocente':0 ,'rebelde':0 ,'sabio':0,'gobernante':0,'creador':0 ,'bufon':0,'mago':0, \

 'arquetipo1':0,'arquetipo2':0, 'caracter1':0,'caracter2':0 }

diccioCaract={'amorfo':[16],'apasionado':[27,31] ,'apatico':[26] ,'colerico':[17,29,30] ,\

 'flematico':[8,15,19,24,28] ,'sanguineo':[7,14] ,'sentimental':[23,25,32] }

listaNoAsignadas=[2,3,5,10,12,13,20,21,22,33,34] #lista de importantes actividades

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

class ph():

 def __init__(self,dni):

 self.dni=dni

 self.inicioAbsoluto=0 # Debe marcar en que iteración nacio este ph(): por ej naci en la
iteracion 1949 (por eso tengo 75 años, dado que estamos en 2024)

 self.edad=0 # su edad . Ej: 75 años;

 self.iteracion = 0 #iteracion actual, normalmente la llamo: tiempo en el main menu

 self.sexo='' #biologico

 self.intencionalidad='No plantea' #Reforzar, Búsqueda, Flotar, Abandono

 self.idFiscalFamilia=0

 self.dniPareja=0 # dni pareja reproductora actual

 self.idFiscalEmpresa=0 #Empresa en la que trabaja

 self.riesgoTolerancia=0 #toleracia personal al riesgo en general; cero: intolerante al
riesgo: aversión;

 self.idPadre=0 #dato que no cambia. -1 si es de la PI

 self.idMadre=0 #dato que no cambia. -1 si es de la Población Inicial

 self.coefiInt=0 #coeficiente inteligencia

 self.resiliencia=0

 self.potencial='0-Ba-Me'

 self.atraPers='N' #se le calculado en nacer y nacerPI

4

 self.sumaVa3Año=0.0 #de cada actividad ejecutada anualmente, suma de va3 -indice
de éxito

 self.sumaVa9Año=0.0 #de cada actividad ejecutada anualmente, suma de va9 -índice
de eficacia

 self.situlaboposi=1 #situacion laboral, cuando naces: infancia (Menos en PI!!) . Los
tres campos se guardan en tabla iteracionecon

 self.antiguedad=0 #antiguedad en esa situlaboposi

 self.climLabo='Bien' #clima laboral (incluida la infancia, jubilación...)
MBien,Bien,Mal,MMaL

 self.palp=0 #ahorros, inversiones, activos... Actualmente es el AHORRO acumulaado

 self.gastoAnyo = 0 #en formaGasto().- el gasto del año en curso

 self.ingrxRBU=0 #¿cuanto cobra en total?: ingrxTrab + ingrxRBU

 self.ingrxTrabB = 0 #solo salario.

 self.plusProductividad =0 #se renuava cada año, sube o baja...incluido en ingrxTrab

 self.ingrxTrab=0 #incluye la parte salarial ingrxTrabB + plusProductividad

 self.ingrTotal= self.ingrxTrab + self.ingrxRBU

 # ¿Cuanto es la parte salarial? = ingrxTrab - plusProductividad

 #diccionarios INDIVIDUALES

 self.miDicPhBasi={'amigo':0,'cuidador':0 ,'explorador':0 ,'heroe':0 , 'amante':0 ,\

 'inocente':0 ,'rebelde':0 ,'sabio':0,'gobernante':0,'creador':0 ,'bufon':0,'mago':0, \

 'arquetipo1':0,'arquetipo2':0, 'caracter1':0,'caracter2':0 }

 self.miDicPh={1:['X',0,0,0,0,0,0,0,0,0]}

 def getDatos(self):

 self.dni, self.inicioAbsoluto, self.edad, self.iteracion,self.sexo, self.intencionalidad,
self.idFiscalFamilia, \

 self.dniPareja,self.idFiscalEmpresa, self.riesgoTolerancia, self.idPadre, self.idMadre,
self.coefiInt, self.resiliencia,\

 self.potencial,self.atraPers, self.sumaVa3Año,self.sumaVa9Año,self.situlaboposi
,self.antiguedad, self.climLabo, self.palp,self.gastoAnyo,\

 self.plusProductividad, self.ingrxTrabB,self.ingrxTrab, self.ingrxRBU,
self.ingrTotal,self.miDicPhBasi,self.miDicPh

 return

5

class Organizacion():

 def __init__(self,dniFiscal):

 self.dniFis=dniFiscal

 self.tipo='' #pyme, empresa, familia, narcos, secta, ejercito, estado, banco,
universidad

 self.creacion=0 #iteracion global de creacion, tiempo global

 self.liquidacion=0 #iteracion global de liquidacion, divorcio

 self.objetivo='' #proposito, objetivo principal

 self.ingresos=0

 self.gastos=0

 self.inversion=0

 self.deuda=0

 self.caracter='' #Pu-publico, Co-concertado,Pr-privado.- La financiación pública a
Concertada es por servicio a ph() concreto

 #diccionario INDIVIDUAL

 self.miDicOrg={1:['X',0,0,0,0,0,0,0,0,'X']}

 def getDatos(self):

 self.dniFis,self.tipo, self.creacion,self.liquidacion,self.objetivo,\

 self.ingresos,self.gastos,self.inversion,self.deuda,self.caracter,self.miDicOrg

 return

#FIN declaraciones

#CAJA DE HERRAMIENTAS

def borrado():

 # Borra los datos de toda tabla de MySQL

 miCursor=miConexion.cursor()

 sql= 'delete FROM tercerbd.desastres;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.atractivopersonal;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.sociedad;'

6

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.iteracion;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.iteracionecon;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.nacer ;'

 miCursor.execute(sql)

 sql = 'ALTER TABLE tercerbd.nacer AUTO_INCREMENT = 1;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.midicphbasi;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.organizaciones;'

 miCursor.execute(sql)

 sql= 'alter table tercerbd.organizaciones AUTO_INCREMENT=1;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.orgafami;'

 miCursor.execute(sql)

 sql= 'alter table tercerbd.orgafami AUTO_INCREMENT=1;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.organiza_miembros;'

 miCursor.execute(sql)

 sql= 'delete FROM tercerbd.organiza_miembrosfami;'

 miCursor.execute(sql)

 miConexion.commit()

 miCursor.close()

 return

def sexoBiol():

 azar = round(random.random(), 2)

 sex = 'V' if azar <0.5 else 'M'

 return sex

7

def formaDiccDecisionGeneral(regActi):

 global anyosVidaMax

 diccionario = {}

 reg = regActi

 conta = 0

 VM = anyosVidaMax - 18 #debe tener acceso al valor concreto calculado en ph_principal

 actividadesPosiblesUnidades
=[2,3,5,7,9,10,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34] #
actividades

 for a in reg:

 if a[0] in actividadesPosiblesUnidades:

 conta += 1

 clave = a[1].rstrip()

 valor1 = int(a[6])

 valor2 = anyosVidaMax if a[7] == 'VM' else int(a[7]) #NP

 valor3 = VM if a[8] == 'VM' else int(a[8]) #VM

 diccionario [clave] = [a[0],valor1,valor2,valor3]

 return diccionario

def recuperarTablasitulaboposi():

 #se cargan los 32 primeros registros de la tabla actividades

 sqlselect= "Select * from tercerbd.situlaboposi "

 regActi = ph_herramientas.selectBDNoWhere(sqlselect)

 regis = [list(a) for a in regActi]

 return regis

def proxIdOrganizacion(familia):

 familia = familia

 #return el próximo id o dniFiscal de la Organizacion a crear

 miCursor=miConexion.cursor()

8

 if familia == True:

 miCursor.execute("SELECT `AUTO_INCREMENT` FROM
INFORMATION_SCHEMA.TABLES \

 WHERE TABLE_SCHEMA = 'tercerbd' AND TABLE_NAME = 'orgafami'; ")

 else:

 miCursor.execute("SELECT `AUTO_INCREMENT` FROM
INFORMATION_SCHEMA.TABLES \

 WHERE TABLE_SCHEMA = 'tercerbd' AND TABLE_NAME = 'organizaciones'; ")

 idOrg=miCursor.fetchall()

 idOrganizaciones=idOrg[0][0]

 miConexion.commit()

 miCursor.close()

 return idOrganizaciones

def formaEmpresa():

 #forma empresas de estos 10 tipos incluidos en la lista

 tipo = ['industria','servicios','campo','enseñanza','sanidad',\

 'software','seguridad','investigacion','finanzas','administración']

 azar = random.randint(0,9)

 tipo_empresa = tipo[azar]

 unidadxAnyo = 100

 precioUnidad = 13

 persTrab =15

 sql="INSERT INTO tercerbd.organizaciones
(tipo,creacion,objetivo,unidadxAnyo,precioUnidad,persTrab) VALUES
(%s,%s,%s,%s,%s,%s)"

 valor=(tipo_empresa,tiempo,'Producción',unidadxAnyo,precioUnidad,persTrab)

 ph_herramientas.insertUno(sql,valor)

 return

9

def atractivoPersonal():

 #se calcula el INDICE de cada Actividad para cada ph y se graba en Mysql. No cambia.

 #en el diccionario miDicPh, campo va3, formará parte del indiceExito de cada Actividad
de cada pH.

 listaTerna = []

 dicGraba={1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0,15:0,16:0,
17:0,18:0,\

 19:0,20:0,21:0,22:0,23:0,24:0, 25:0, 26:0,27:0,28:0, 29:0,30:0,31:0,32:0,33:0,34:0}

 #tendras que seleccionar el DNI a los que no tengan calculado al atractivoPersonal

 for dni in nombrePh:

 objeGene = nombrePh.get(dni)

 if objeGene.atraPers == 'N':

 objeGene.atraPers = 'S'

listaTerna.append((dni,objeGene.miDicPhBasi['arquetipo1'],objeGene.miDicPhBasi['cara
cter1']))

 for lista in listaTerna: #calculo

 matriz = []

 dni=lista[0] #inicializacion

 arquetipo=lista[1]

 caracter=lista[2]

 for i in [1,4,6,9,11]:

 azar=random.randint(6,10)

 dicGraba[i]=azar #comer,descansar,salud,vestido, preparar oficio...

 #se supone que las actividades de arquetipo, caracter, obligatorias, no asignadas son
conjuntos disjuntos...

 #diccioArquet NO es modificado en esta funcion: solamente se LEE

 for arquetipo in diccioArquet:

 listaA = []

 listaA = diccioArquet[arquetipo] #quiero que meta los valores numericos

 for ii in listaA:

10

 azar=random.randint(5,9)

 dicGraba[ii]=azar

 for caracter in diccioCaract:

 listaC=[]

 listaC=diccioCaract[caracter]

 for ii in listaC:

 azar=random.randint(4,8)

 dicGraba[ii]=azar

 for iii in listaNoAsignadas:

 listaNA=[]

 listaNA=listaNoAsignadas

 for iii in listaNA:

 if iii in [3,5,10,21]:

 azar=random.randint(6,9)

 dicGraba[iii]=azar

 else:

 azar=random.randint(1,7)

 dicGraba[iii]=azar

 #graba en "atractivopersonal". En miDicPh() no graba, lo hará a través de Indice de
Exito de Actividad

 for i in range(1,35):

 valor3=(dni,i,dicGraba.get(i))

 matriz.insert(dni,tuple(valor3))

 sql3='INSERT INTO tercerbd.atractivopersonal (dni,actividad,atractivo) \

 VALUES (%s,%s, %s)'

 ph_herramientas.insertBD(sql3,matriz) #graba en tabla atractiviPersonal tipo
executemany

 return

def asignaArquetipo(i):

 dicOrdenado = {}

 miDicPhBasi = i

11

 # lo llama gestarPI y gestar. Se asigna por azar en PI

 dicOrdenado = sorted(miDicPhBasi.items(), key= lambda i:i[1],reverse=True)

 miDicPhBasi['arquetipo1'] = dicOrdenado[0][0]

 miDicPhBasi['arquetipo2'] = dicOrdenado[1][0]

 return

def asignaCaracter(i):

 #lo llama gestarIP y gestar

 #el azar determina el caracter

 dentro=True

 miDicPhBasi = i

 caract=['amorfo','colerico' ,'apasionado', 'flematico' ,'sanguineo' ,'sentimental','apatico']

 while dentro:

 for i in range (0,2):

 azar1=random.randint(0,3)

 azar2=random.randint(4,6)

 if azar1 != azar2:

 dentro=False

 miDicPhBasi['caracter1'] = caract[azar1]

 miDicPhBasi['caracter2'] = caract[azar2]

 return

def riesgoTolerancia(dni):

 # Puede tenerse aversión al riesgo o puede irse a buscarlo

 # según el arquetipo: se asigna una tolerancia al riesgo

 # la maxima tolerancia es 5, la minima es 0 (aversión al riesgo)

 # se graba en nacer; por gestarPInicial y Gestar.- En OBJETO en nacer_ph

 # se utiliza en la asignación de trabajo y en S-Dificil

 dni = dni

 miAC = []

12

 objeGene1=nombrePh.get(dni)

 miAC = [objeGene1.miDicPhBasi['arquetipo1'],objeGene1.miDicPhBasi['arquetipo2']]

 if 'heroe' in miAC:

 riesgoToler = 5

 elif 'gobernante'in miAC:

 riesgoToler = 5

 elif 'mago' in miAC:

 riesgoToler = random.randint(3, 4)

 elif 'explorador' in miAC:

 riesgoToler = random.randint(3, 4)

 elif 'rebelde' in miAC:

 riesgoToler = random.randint(3, 4)

 else:

 riesgoToler = random.randint(0,3)

 return riesgoToler

def potencialCiResi(ci,re):

 potencial = '0-Ba-Me' #Bajo o casi Medio

 coefCI = ci

 coefResi = re

 sumaCoef = coefCI + coefResi

 if 1.39 < sumaCoef < 1.69:

 potencial = '1-Medio'

 elif 1.69 < sumaCoef < 1.9:

 potencial = '2-Altos'

 elif 1.9 < sumaCoef < 2.01:

 potencial = '3-Malto'

 return potencial

13

#FIN CAJA DE HERRAMIENTAS. He comprobado que todas son llamadas 14-7-2024

def cargarActiDat1245(objeGene,numActi,regActi):

 #DAR DE ALTA UNA ACTIVIDAD -numActi- EN miDicPh() del ph(objDni)

 #objeGene=nombrePh.get(objDni)

 i = numActi

 #actvidades que tienen 0 en coste de tiempo

 regActi[i-1][5] = random.randint(8,25) if regActi[i-1][5] == 0 else regActi[i-1][5]

 objeGene.miDicPh[i] = ['X',0,0,0,0,0,0,0,0,0]

 objeGene.miDicPh[i][0]=regActi[i-1][1] #nombre Actividad

 objeGene.miDicPh[i][1]=regActi[i-1][4] #impacto economico

 objeGene.miDicPh[i][4]=regActi[i-1][5] #coste tiempo/ lo que le va a durar

 objeGene.miDicPh[i][7]=regActi[i-1][2] #riesgo actividad

 return

def calderaDesastres(pobl,itera):

 #Está implementado pandemias y crisis económicas.

 #tienen implicaciones sobre muerte y sobre trabajo

 def pandemia():

 tipo='P'

 denomPand=[200,100,70,50,25,15,10,5,2] # va de CERO a OCHO

 #personasAfectadas-->pA

 azar1=random.randint(5,7) #5 y 7 incluidos

 azar2=random.randint(3,5)

 azar3=random.randint(3,8)

14

 denom1=denomPand[azar1]

 denom2=denomPand[azar2]

 denom3=denomPand[azar3]

 pAMuerte=int(poblacion/denom1)

 pATrabajo=int(poblacion/denom2)

 pAPalp=int(poblacion/denom3)

 #anota desastre en tabla desastres

 sql1= "INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \

 VALUES (%s,%s, %s,%s,%s)"

 valor1=(iteraGlobal,tipo,pAMuerte,pATrabajo,pAPalp)

 ph_herramientas.insertUno(sql1,valor1)

 #ejecuta muertes.-

 sqlselect1="select id,edad from nacer where fallecido='N'"

 registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

 long=len(registro)

 if pAMuerte >= long:

 pAMuerte=int(long+1) # +1 preparando para el for y entero no float

 else:

 pAMuerte =int(pAMuerte+1) # +1 preparando para el for y entero

 for i in registro[0:pAMuerte]:

 idNacer=0

 puntoHumano=0

 idNacer=i[0] #id o dni.- idNacer es entero

 edad=i[1]

 puntoHumano=idNacer #idNacer es int

 dni=(idNacer,)

 sqlupdate2= "UPDATE tercerbd.nacer set fallecido='S' where id=%s"

 ph_herramientas.updateUno(sqlupdate2,dni) #al morir se da de baja definitiva de
toda organización

 sqlupdate2= "UPDATE tercerbd.organiza_miembros set esBaja='S' where
id_nacer=%s"

15

 ph_herramientas.updateUno(sqlupdate2,dni)

 sqlupdate2= "UPDATE tercerbd.organiza_miembrosfami set esBaja='S' where
id_nacer=%s"

 #ph_herramientas.updateUno(sqlupdate2,dni)

 # sqlupdate2= "UPDATE tercerbd.iteracionecon set va2='S' where dni=%s and
tiempo=%s and actividad=33"

 #valor2=(idNacer,edad)

 #ph_herramientas.updateBD(sqlupdate2,valor2)

 objeto=nombrePh.get(puntoHumano) #En objeto está el objeto

 if objeto is not None:

 #quitar referencia a Pareja

 pareja = objeto.dniPareja

 if pareja != 0:

 objePareja= nombrePh.get(pareja)

 if objePareja is not None:

 objePareja.dniPareja = 0

 del objeto #para BORRAR el objeto que ha fallecido

 #ER_AD se encargará luego de completar el proceso, grabar...etc

 #ejecuta perdida de trabajo y reducción del ingresoAnual

 sqlselect1="select id from tercerbd.nacer where fallecido='N'"

 registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

 long=len(registro)

 if pATrabajo >= long:

 pATrabajo=int(long+1) # +1 preparando para el for y entero no float

 else:

 pATrabajo =int(pATrabajo+1) # +1 preparando para el for y entero

 for i in registro[0:pATrabajo]:

 idNacer=0

 puntoHumano=0

 idNacer=i[0] #id o dni.- idNacer es entero

16

 puntoHumano=idNacer #idNacer es int

 objeto1=nombrePh.get(puntoHumano) #En objeto1 está el objeto

 if objeto1 is not None:

 if objeto1.situlaboposi >= 4:

 objeto1.situalaboposi = 4

 objeto1.ingrxTrab = 0

 else:

 pass

 #ER_AD se encargará luego de completar el proceso, grabar...etc

 return pAMuerte

 def crisis():

 tipo='E'

 denomCrisis=[200,100,70,50,25,15,10,5,2]

 #personasAfectadas-->pA

 azar2=random.randint(3,5)

 azar3=random.randint(3,8) #3 y 8 incluidos

 denom2=denomCrisis[azar2]

 denom3=denomCrisis[azar3]

 pATrabajo=round(poblacion/denom2,0)

 pAPalp=round(poblacion/denom3,0)

 #anota desastre en tabla desastres

 sql1= "INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \

 VALUES (%s,%s, %s,%s,%s)"

 valor1=(iteraGlobal,tipo,0,pATrabajo,pAPalp)

 ph_herramientas.insertUno(sql1,valor1)

 #ejecuta perdida de trabajo y reducción del ingresoAnual

 sqlselect1="select id from nacer where fallecido='N'"

 registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

 long=len(registro)

17

 if pATrabajo >= long:

 pATrabajo=int(long+1) # +1 preparando para el for y entero no float

 else :

 pATrabajo =int(pATrabajo+1) # +1 preparando para el for y entero

 for i in registro[0:pATrabajo]:

 idNacer=0

 puntoHumano=0

 idNacer=i[0] #id o dni.- idNacer es entero

 puntoHumano=idNacer #idNacer es int

 objeto1=nombrePh.get(puntoHumano) #En objeto1 está el objeto

 if objeto1 is not None:

 if objeto1.situlaboposi >= 4:

 objeto1.situalaboposi = 4

 objeto1.ingrxTrab = 0

 else:

 pass

 #ER_AD se encargará luego de completar el proceso, grabar...etc

 return

 poblacion=pobl

 iteraGlobal= tiempo #es el tiempo Global, diferente de la edad de cada persona

 pAMuerte = 0

 #ruleta de la Fortuna

 ruleta=random.randint(1,10)

 if ruleta<=7:

 tipo='N'

 sql1= "INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \

 VALUES (%s,%s, %s,%s,%s)"

 valor1=(iteraGlobal,tipo,0,0,0)

 ph_herramientas.insertUno(sql1,valor1)

 elif ruleta >7 and ruleta <=9: #falta modelizar el largo de Kondratiev

18

 crisis()

 elif ruleta==10:

 pAMuerte = pandemia()

 return pAMuerte

#FIN REGLAS SOCIEDAD

#POBLACIÓN INICIAL Y SIGUIENTES GENERACIONES: GESTACION Y NACIMIENTO

def azarCI():

 dentro=True

 while dentro:

 azarCI = round(random.random(), 2)

 if azarCI > 0.3:

 dentro = False

 return azarCI

def azarResi():

 dentro=True

 while dentro:

 azarResi = round(random.random(), 2)

 if azarResi > 0.3:

 dentro = False

 return azarResi

def nacerPI(poblacionInicial,regActi):

 # Población Inicial (PI).

 #Como proceden de Creación (no de evolución) tienen que estar YA en edad de procrear
y trabajar

 # Crea los ph(), graba en nacer, miDicPhBasi, iteracion (miDicPh)

 def edadPI():

19

 edadPI = random.randint(18,40)

 return edadPI

 def valoresmiDicPhBasiPI(a):

 relacion = ['arquetipo1','arquetipo2', 'caracter1','caracter2']

 aa = a

 objeGene = nombrePh.get(aa)

 for i in miDicPhBasi: # rellena con random, que serán arquetipos y caracteres

 objeGene.miDicPhBasi[i] = round(random.random(), 4) if i not in relacion else 0

 asignaArquetipo(objeGene.miDicPhBasi)

 asignaCaracter(objeGene.miDicPhBasi)

 return

 #MAIN nacerPI

 poblacionInicial = poblacionInicial

 regActi = regActi

 lista = []

 listaMDPB=[]

 matriz1 = []

 matriz2 = []

 PlusP = 11400/10 #Deberia existir un limite maximo productividad: el 10% del
ingrxTrabB

 #al ser poblacion inicial, el primer dni=1 y el ultimo dni=poblacionInicial

 matriz2 = []

 for i in range(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.

 listaMDPB.append(0)

 for i in range(0, 10): # warning:(range(a,b))es hasta b-1.

 lista.append(0)

 for a in range(1, poblacionInicial+1):

20

 #nacen los ph() de la Poblacion Inicial

 rbuCapita = 11400

 dni = a

 #crea objeto hijo/a

 nombrePh[dni] = ph(dni)

 #actuo sobre el objeto creado

 objeGene=nombrePh.get(dni) #objeGene apunta al objeto hijo

 objeGene.dni = dni

 objeGene.edad = edadPI() # la edad del ser que se hace por random en este caso para
procrear

 objeGene.inicioAbsoluto = 0 #tiempo Global

 objeGene.sexo = sexoBiol()

 objeGene.intencionalidad = 'No plantea'

 objeGene.idFiscalFamilia = 0

 objeGene.dniPareja = 0

 objeGene.idFiscarEmpresa = 0

 objeGene.riesgoTolerancia = 5 # DEBE rellenarse cuando sepas arquetipos con
riesgoToler

 objeGene.idPadre = -1

 objeGene.idMadre = -1

 objeGene.coefiInte = azarCI()

 objeGene.resiliencia = azarResi()

 objeGene.potencial = potencialCiResi(objeGene.coefiInte,objeGene.resiliencia)

 objeGene.atraPers = 'N'

 objeGene.sumaVa3Año=0.0

 objeGene.situlaboposi=1

 objeGene.palp = 0

 objeGene.gastoAnyo = 0

 objeGene.plusProductividad = PlusP + (PlusP/random.randint(8,10)) -
(PlusP/random.randint(5,10))

21

 objeGene.ingrxTrab = 0

 objeGene.ingrXRBU = rbuCapita

 objeGene.miDicPhBasi = miDicPhBasi

 #resumen economico

 valoresmiDicPhBasiPI(a) # Asigna Arquetipo y Caracter

 listaMDPB[0] = a

 indiceLista = 1

 for i in miDicPhBasi:

 listaMDPB[indiceLista] = objeGene.miDicPhBasi[i]

 indiceLista +=1

 matriz2.insert(a,tuple(listaMDPB))

 #AHORA puede calcularse el riesToles !!!

 riesToler = riesgoTolerancia(dni)

 objeGene.riesgoTolerancia = riesToler

 listaMDPB = []

 for i in range(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.

 listaMDPB.append(0)

 lista[0] = objeGene.edad # la edad del ser que se HIZO por random en este caso para
procrear

 lista[1] = 0 # es nacerPI

 lista[2] = objeGene.sexo

 lista[3] = 'N' #fallecido NO

 lista[4] = objeGene.riesgoTolerancia #Tolerancia al riesgo

 lista[5] = -1 #idPadre

 lista[6] = -1 #idMadre

 lista[7] = objeGene.coefiInte #coeficiente intelectual

 lista[8] = objeGene.resiliencia #resiliencia

 lista[9] = objeGene.potencial

 matriz1.insert(a,tuple(lista))

22

 lista = []

 for i in range(0, 10): #warning:(range(a,b))es hasta b-1.

 lista.append(0)

 sql2 = "INSERT INTO tercerbd.midicphbasi (dni,amigo,cuidador,explorador ,heroe ,
amante ,\

 inocente ,rebelde ,sabio,gobernante,creador ,bufon,mago, \

 arquetipo1,arquetipo2, caracter1,caracter2) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s)"

 tupla2 = matriz2

 ph_herramientas.insertBD (sql2,tupla2)

 #se graba en la tabla nacer

 tupla1 = matriz1

 sql1 = "INSERT INTO tercerbd.nacer (edad,inicioAbsoluto,sexo,fallecido,
riesgoTolerancia,\

 idPadre,idMadre,coefiInte, resiliencia, potencial) VALUES (%s,%s,%s,
%s,%s,%s,%s,%s,%s, %s)"

 dni = ph_herramientas.insertBD(sql1, tupla1) #dni del ph() que se acaba de grabar en
ultimo lugar

 for a in range(1, poblacionInicial+1):

 matriz4 = []

 matriz5 = []

 objeGene = nombrePh.get(a)

 #actividades base

 #¿Cuanto importan las necesidades básicas de cada ph() de la PI este año?. Todos
iguales

 relaActi=[1,2,3,4,6,7,8,9,10,11] #relacion de actividades que se les activan;

 #PI todos pueden trabajar, tener hijos, estudiar... pues su edad ha sido elevada.

 #Sus hijos: normal :relaActi=[1,4,6,7,10,11]

 for i in relaActi: #se escribe en objeGene.miDicPh

 cargarActiDat1245(objeGene,i,regActi)

23

 #grabar en tabla iteración el contenido de miDicPh ; para el dni en curso

 for i in objeGene.miDicPh.keys():

 if i == 3:

 objeGene.miDicPh[i][5] = 9 #quieren tener 9 hijos; si no es PI, es x azar en decision

 iterGraba = []

 tupla4 = ()

 for ii in range (0,14): #inicializa iterGraba

 iterGraba.append(0)

 iterGraba[0] = a

 iterGraba[1] = tiempo #tiempo Global: vueltas hasta duracionSimulacion

 iterGraba[2] = lista[0] #edad

 iterGraba[3] = i

 iterGraba[4] = objeGene.miDicPh[i][0] #va0

 iterGraba[5] = objeGene.miDicPh[i][1] #va1

 iterGraba[6] = objeGene.miDicPh[i][2] #va2

 iterGraba[7] = objeGene.miDicPh[i][3] #va3

 iterGraba[8] = objeGene.miDicPh[i][4] #va4

 iterGraba[9] = objeGene.miDicPh[i][5] #va5

 iterGraba[10] = objeGene.miDicPh[i][6] #va6

 iterGraba[11] = objeGene.miDicPh[i][7] #va7

 iterGraba[12] = objeGene.miDicPh[i][8] #va8

 iterGraba[13] = objeGene.miDicPh[i][9] #va9

 matriz4.insert(a,tuple(iterGraba))

 sql = "INSERT INTO tercerbd.iteracion (dni,tiempo, edad, actividad ,\

 va0 , va1,va2, va3, va4, va5, va6, va7, va8, va9) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"

 tupla4 = matriz4

 ph_herramientas.insertBD (sql,tupla4)

24

 lista2 = []

 for i in range (0,18):

 lista2.append(0)

 lista2[0] = a #dni

 lista2[1] = tiempo #iteracion

 lista2[2] = objeGene.edad #edad

 lista2[3] = 4 #situacion laboral

 lista2[4] = 'S' #¿es la ultima?

 lista2[5] = 0 #suma va3 - no calculada aún -PI-

 lista2[6] = 0 #♠suma de va9, no calculado aún

 lista2[7] = 0 #palp

 lista2[8] = rbuCapita #gasto este primer anyo

 lista2[9] = rbuCapita #ingrxRBU .

 lista2[10] = 0 #ingrx Trabajo báse

 lista2[11] = 0 #plus productividad

 lista2[12] = 0 #.- ingrxTrab

 lista2[13] = lista2[12] + lista2[9] #ingrTotal, estamos en nacerPI,

 lista2[14] = objeGene.intencionalidad

 lista2[15] = 0 #idFiscal Familia

 lista2[16] = 0 #idPareja

 lista2[17] = 0 #idFiscalEmpresa

 matriz5.insert(a,tuple(lista2))

 sql = "INSERT INTO tercerbd.iteracionecon (dni,tiempo,
edad,situlabo,ultima,sumava3,sumava9,palp,\

gastoanyo,ingrxRBU,ingrxTrabB,ingrxPlusP,ingrxTrab,ingrTotal,intenciona,idFiscalFamilia,i
dPareja,idFiscalEmpresa) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s,%s)"

 ph_herramientas.insertBD(sql,matriz5)

25

 return

def muerte(tiempo):

 tiempo = tiempo

 #establezce fallecido='S' para señalar registros en nacer e iteracion y POO

 #en "nacer" y en POO, cada id SOLO tiene un registro; NO así en iteracion

 def teHaTocado():

 edad = objeGene.edad

 if edad>edadMax and random.randint(1,100)>30:

 fallecido='S'

 elif 1 < edad <=18 and random.randint(1,100)>98: #niños pueden morir...dificil

 fallecido='S'

 elif 18 < edad < edadMax and random.randint(1,100)>95: #adultps pueden
morir...dificil

 fallecido='S'

 else:

 fallecido='N'

 return fallecido

 #Todos los vivos cumplen años y pueden MORIR

 edadMax = anyosVidaMax # la esperanza de vida aumenta con el t

 numMuertos = 0

 listaBajas = []

 nombrePhClavesCongeladas = []

 nombrePhClavesCongeladas = list(nombrePh)

 for i in nombrePhClavesCongeladas:

 objeGene = nombrePh.get(i)

 dni = i

 muerto = teHaTocado()

 #si ha fallecido hay que actualizar nacer, iteracion y la POO

26

 if muerto == 'S':

 valor = (dni,)

 sqlupdate2= "UPDATE nacer set fallecido='S' where id=%s"

 ph_herramientas.updateUno(sqlupdate2,valor)

 sqlupdate2= "UPDATE organiza_miembros set esBaja='S' where id_nacer=%s"

 ph_herramientas.updateUno(sqlupdate2,valor)

 sqlupdate2= "UPDATE organiza_miembrosfami set esBaja='S' where id_nacer=%s"

 ph_herramientas.updateUno(sqlupdate2,valor)

 # Todas las iteracionecon del fallecido pondrán en ultima 'N' pues está fallecido,

 #no hay que hacer cálculos actuales con él

 valorIte = (dni,tiempo)

 sqlupdate2= "UPDATE tercerbd.iteracionecon set ultima='N' where dni=%s and
tiempo=%s"

 ph_herramientas.updateUno(sqlupdate2,valorIte)

 listaBajas.append(dni)

 numMuertos +=1

 for baja in listaBajas:

 #debemos comprobar que no constan como pareja de alguien vivo. Si constaran:
dniPareja=0

 objeGeneB = nombrePh[baja]

 dniPare = objeGeneB.dniPareja

 objeGenePare = nombrePh.get(dniPare)

 if objeGenePare !=0 and objeGenePare is not None:

 objeGenePare.dniPareja = 0

 else:

 pass

 #ahora podemos quitar a la Baja de la lista

 del nombrePh[baja]

 return numMuertos

def reproducirse():

27

 #se buscan V y M que tienen S en hijos, se escoge uno con una

 #se toman cinco genes de uno y cinco de otra y se forma su genoma y se asigna un

 #sexo por azar. Se graba en la BD; despues de gestar, hay que nacer

 #al mundo de los objetos: se llamará nacer_ph

 #Cuando tiempo=1 se trata de la Poblacion Inicial que NO ha pasado por ER-ED

 #En PI se les asignó a todos la edad para tener y en la actividad 3 se puso-->Hijos='S'

 def formaFamilia(idOrganizacion,ingr,va17,va18,idDesc):

 #Crea Familia o completa otra ya formada con nuevos miembros

 def org_mie():

 sql="INSERT INTO tercerbd.organiza_miembrosfami (idFiscal,id_nacer,tipo) VALUES
(%s,%s,%s)"

 valor=(idOrganizacion,vv,tipo)

 ph_herramientas.insertUno(sql,valor)

 return

 def busca_idFami(vaXX):

 sql="select idFiscal from tercerbd.organiza_miembrosfami where id_nacer=%s and
tipo='Familia' and esBaja = 'N'"

 valor=(vaXX,) #padre

 idFiscal_Familia = ph_herramientas.selectBD(sql,valor)

 return idFiscal_Familia

 objeGeneP=nombrePh.get(va17) #padre

 objeGeneM=nombrePh.get(va18) #madre

 tipo='Familia'

 idDesc = idDesc[0] if idDesc is tuple else idDesc #evitar que dni aparezca como tupla

 if objeGeneP.idFiscalFamilia == 0 and objeGeneM.idFiscalFamilia ==0:

 #Ni padre ni madre estan en una familia como progenitores

 vv=0

 creacion = tiempo

 sql="INSERT INTO tercerbd.orgafami (creacion,tipo,ingresos) VALUES (%s,%s,%s)"

 valor=(creacion,tipo,ingr)

 ph_herramientas.insertUno(sql,valor)

 vv=va17 #padre

28

 org_mie()

 vv=va18 #madre

 org_mie()

 vv=idDesc #hijo

 org_mie()

 #es un diccionario:key es idOrganizacion y Value el puntero al objeto

 nombreOrg[idOrganizacion]=Organizacion(idOrganizacion)

 nombreOrg[idOrganizacion].tipo='Familia'

 nombreOrg[idOrganizacion].objetivo='Procrear'

 #nombreOrg[idOrganizacion].ingresos=ingr

 objeGeneP.idFiscalFamilia=idOrganizacion

 objeGeneP.dniPareja = va18

 objeGeneM.idFiscalFamilia=idOrganizacion

 objeGeneM.dniPareja = va17

 elif objeGeneP.idFiscalFamilia != 0 and objeGeneM.idFiscalFamilia !=0:

 #No debe formar familia, pero debe añadir el hijo a la existente, supongo estan en la
misma

 idFiscal_Familia = busca_idFami(va17)

 if idFiscal_Familia != []:

 idOrganizacion = idFiscal_Familia[0][0]

 vv = idDesc

 org_mie()

 elif objeGeneP.idFiscalFamilia == 0 and objeGeneM.idFiscalFamilia !=0:

 #No debe formar familia, pero debe añadir al hijo y al padre a la existente de la
madre

 idFiscal_Familia = busca_idFami(va18)

 if idFiscal_Familia != []:

 idOrganizacion = idFiscal_Familia[0][0]

 vv = va17

 org_mie()

 objeGeneP.idFiscalFamilia=idOrganizacion

29

 objeGeneP.dniPareja = va18

 vv = idDesc

 org_mie()

 elif objeGeneP.idFiscalFamilia != 0 and objeGeneM.idFiscalFamilia ==0:

 #No debe formar familia, pero debe añadir al hijo y a la madre a la existente del
padre

 idFiscal_Familia = busca_idFami(va17)

 if idFiscal_Familia != []:

 idOrganizacion = idFiscal_Familia[0][0]

 vv = va18

 org_mie()

 objeGeneM.idFiscalFamilia=idOrganizacion

 objeGeneM.dniPareja = va17

 vv = idDesc

 org_mie()

 return

 def reproxLista(listaZip,dni):

 listaZipIn = listaZip

 dniInicial=dni #dobo saber donde comienzo

 dni=dni #este irá variando

 lista=[]

 matriz1 = []

 matriz2 = []

 matriz3 = []

 for tupla in listaZipIn:

 lista = []

 listaMDPB = []

 for i in range(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.

30

 listaMDPB.append(0)

 #crea objeto hijo/a

 nombrePh[dni] = ph(dni)

 #actuo sobre el objeto creado

 objeGene=nombrePh.get(dni) #objeGene apunta al objeto hijo

 #cada elemento de listaZipIn viene como (dni1,dni2) una tupla que llamo tupla (en
el for)

 if nombrePh.get(tupla[0]) is None or nombrePh.get(tupla[1]) is None:

 continue

 objeGeneP = nombrePh.get(tupla[0])

 objeGeneM = nombrePh.get(tupla[1])

 v19 = tupla[0] #dni de V

 v20 = tupla[1] #dni de M

 primero = sexoBiol() #sexo bio que tenga el nuevo ser

 relacion1 = ['rebelde','sabio','gobernante','creador' ,'bufon','mago',\

 'arquetipo1','arquetipo2', 'caracter1','caracter2']

 objeGene.miDicPhBasi = objeGeneM.miDicPhBasi #todos los random de la madre

 for i in objeGene.miDicPhBasi:

 if i not in relacion1 : # rellena con random,los seis primeros

 objeGene.miDicPhBasi[i] = objeGeneP.miDicPhBasi[i]

 relacion2 = ['arquetipo1','arquetipo2', 'caracter1','caracter2']

 for i in objeGene.miDicPhBasi:

 if i in relacion2:

 objeGene.miDicPhBasi[i] = 0

 asignaArquetipo(objeGene.miDicPhBasi)

 asignaCaracter(objeGene.miDicPhBasi)

 listaMDPB[0] = dni

31

 indiceLista = 1

 for i in miDicPhBasi:

 listaMDPB[indiceLista] = objeGene.miDicPhBasi[i]

 indiceLista +=1

 matriz2.insert(dni,tuple(listaMDPB))

 #Crea Familia procrear (true); tb graba en organiza_miembros

 ingr = objeGeneP.ingrxRBU + objeGeneM.ingrxRBU

 familia = True if objeGeneP.idFiscalFamilia ==0 and objeGeneM.idFiscalFamilia ==0
else False

 #if familia:

 #idOrganizacion=proxIdOrganizacion(familia)

 #formaFamilia(idOrganizacion,ingr,v19,v20,dni)

 idOrganizacion=proxIdOrganizacion(familia)

 formaFamilia(idOrganizacion,ingr,v19,v20,dni)

 riesgoToler = riesgoTolerancia(dni) #ya tiene arquetipo1 y arquetipo2

 #se rellena el objeto en RAM con sus valores

 objeGene.dni = dni

 objeGene.edad = 1 # la edad del ser que se gesta ahora

 objeGene.inicioAbsoluto = tiempo #global: num vuelta actual cuando nace: la única
vez que se escribe aqui

 objeGene.iteracion = tiempo #debe cambiar con cada iteracion

 objeGene.sexo = primero #sexo biologico

 objeGene.intencionalidad = 'Reforzar'

 objeGene.idFiscalFamilia = idOrganizacion

 objeGene.dniPareja = 0

 objeGene.idFiscarEmpresa = 0

 objeGene.riesgoTolerancia = riesgoToler #riesgoToler riesgoTolerancia

 objeGene.idPadre = v19 #idPadre

 objeGene.idMadre = v20

 objeGene.coefiInte = azarCI()

32

 objeGene.resiliencia = azarResi()

 objeGene.potencial = potencialCiResi(objeGene.coefiInte,objeGene.resiliencia)

 objeGene.atraPers = 'N'

 objeGene.situlaboposi=1

 objeGene.palp = 0

 objeGene.gastoAnyo = 0

 objeGene.plusProductividad = 0

 objeGene.ingrxTrab = 0

 objeGene.ingrXRBU = rbuCapita

 objeGene.ingrTotal = objeGene.ingrxTrab + rbuCapita

 #objeGene.miDicPhBasi = miDicPhBasi

 #objeGene.miDicPh = {1:['X',0,0,0,0,0,0,0,0,0]} -lo debe crear automáticamente

 #Para tabla nacer

 for i in range(0, 10): # warning:range(a,b) es hasta b-1.

 lista.append(0)

 #Tabla nacer, es un recien nacido

 lista[0] = 1 # la edad del ser que se gesta ahora

 lista[1] = tiempo #global: num vuelta actual

 lista[2] = primero #sexo biologico

 lista[3] = 'N' # Va para tabla nacer es fallecido;

 lista[4] = riesgoToler #riesgoTolerancia

 lista[5] = v19 #idPadre

 lista[6] = v20 #idMadre

 lista[7] = objeGene.coefiInte #coeficiente intelectual

 lista[8] = objeGene.resiliencia #resiliencia

 lista[9] = objeGene.potencial

 matriz1.insert(dni,tuple(lista))

 lista = []

 #actividades base: miDicPh

33

 #¿Cuanto importan las necesidades básicas de cada ph() de la PI este año?. Todos
iguales

 relaActi=[1,4,6,7,8,10,11] #relacion de actividades que se activan;

 for i in relaActi: #se escribe en objeGene.miDicPh

 cargarActiDat1245(objeGene,i,regActi)

 #grabar en tabla iteración el contenido de miDicPh ; para el dni en curso

 for i in objeGene.miDicPh.keys():

 iterGraba = []

 for ii in range (0,14):

 iterGraba.append(0)

 iterGraba[0] = dni

 iterGraba[1] = tiempo

 iterGraba[2] = 1 #edad: se gesta ahora

 iterGraba[3] = i

 iterGraba[4] = objeGene.miDicPh[i][0] #va0

 iterGraba[5] = objeGene.miDicPh[i][1] #va1

 iterGraba[6] = objeGene.miDicPh[i][2] #va2

 iterGraba[7] = objeGene.miDicPh[i][3] #va3

 iterGraba[8] = objeGene.miDicPh[i][4] #va4

 iterGraba[9] = objeGene.miDicPh[i][5] #va5

 iterGraba[10] = objeGene.miDicPh[i][6] #va6

 iterGraba[11] = objeGene.miDicPh[i][7] #va7

 iterGraba[12] = objeGene.miDicPh[i][8] #va8

 iterGraba[13] = objeGene.miDicPh[i][9] #va9

 matriz3.insert(dni,tuple(iterGraba))

 dni +=1

 tupla1 = matriz1

 sql1 = "INSERT INTO tercerbd.nacer (edad,inicioAbsoluto,sexo,fallecido,
riesgoTolerancia,idPadre,\

 idMadre,coefiInte, resiliencia, potencial) VALUES (%s,%s,%s, %s,%s,%s,%s,%s,%s,
%s)"

34

 dniFinal = ph_herramientas.insertBD(sql1, tupla1) #dni del ph() que se acaba de
grabar en ultimo lugar

 sql = "INSERT INTO tercerbd.midicphbasi (dni,amigo,cuidador,explorador ,heroe ,
amante ,\

 inocente ,rebelde ,sabio,gobernante,creador ,bufon,mago, \

 arquetipo1,arquetipo2, caracter1,caracter2) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s)"

 tupla2 = matriz2

 ph_herramientas.insertBD (sql,tupla2)

 sql = "INSERT INTO tercerbd.iteracion (dni,tiempo, edad, actividad ,\

 va0 , va1,va2, va3, va4, va5, va6, va7, va8, va9) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"

 tupla3 =matriz3

 ph_herramientas.insertBD (sql,tupla3)

 #Aún no existe una contabilidad familiar

 #if familia:

 #ingr = objeGeneP.ingrxRBU + objeGeneM.ingrxRBU + objeGene.ingrXRBU

 #objeGeneP.ingrxRBU = objeGeneM.ingrxRBU = objeGene.ingrXRBU = 0

 #nombreOrg[idOrganizacion].ingresos=ingr

 return

 #construir Lista con la info de POO

 listaV = []

 listaM = []

 listaZip = []

 nombrePhClavesCongeladas = []

35

 estadosInactivos=['X','N']

 # va[0] -->X: no se está ejecutando / N: no se quiere ejecutar / Texto de actividad:
se está ejecutando

 nombrePhClavesCongeladas = list(nombrePh)

 for i in nombrePh: #se eliminan los dni de las parejas en la copia

 objeGene = nombrePh.get(i)

 if objeGene.dniPareja != 0 and objeGene.dniPareja in nombrePhClavesCongeladas:

 nombrePhClavesCongeladas.remove(objeGene.dniPareja)

 #En lista hay sin pareja (V o M) y con pareja de dniPareja (pero la pareja NO está en lista)

 for i in nombrePhClavesCongeladas:

 objeGene = nombrePh.get(i)

 #miDicPh `3 +-->Hijos

 if 18 < objeGene.edad < 65:

 if 3 in objeGene.miDicPh and objeGene.miDicPh[3][0] not in estadosInactivos :

 if objeGene.dniPareja == 0 : #No tiene pareja, soltero/a

 if objeGene.sexo =='V':

 listaV.append(objeGene.dni)

 else:

 listaM.append(objeGene.dni)

 elif objeGene.dniPareja != 0 : #SI tiene pareja y Familia formada

 if objeGene.sexo =='V':

 listaV.append(objeGene.dni)

 listaM.append(objeGene.dniPareja)

 else:

 listaM.append(objeGene.dni)

 listaV.append(objeGene.dniPareja)

 for tupla in zip(listaV,listaM):

 listaZip.append(tupla) #si distintas longitudes, zip toma la de menor tamaño

 #sql = "SELECT `AUTO_INCREMENT` FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA = 'tercerbd' \

36

 #AND TABLE_NAME = 'nacer';" He observador no coincidencia entre valor
autoincrement

 #de tabla nacer y este de informatio_schema

 sql = "SELECT count(*) FROM tercerbd.nacer;"

 DNI = ph_herramientas.selectBDNoWhere(sql)

 dni = DNI[0][0]

 dni +=1 #será el dni del próximo ser nacido; el resto sera dni+1

 nacidos = len (listaZip)

 reproxLista(listaZip,dni) #Se formaran ALGUNAS familias, se completaran otras, naceran
hijos...

 return nacidos

#FIN DE POBLACIÓN INICIAL Y DE SIGUIENTES GENERACIONES: GESTACION Y
NACIMIENTO

#INICIO MOVIMIENTOS ANUALES, ITERACIONES anuales

def iteracionGeneral(plusP,matrizL):

 # Esta función debe añadir una iteraciónde a todos los nacidos no muertos

 #cada año una iteración mas

 #en 'tiempo' viene el valor actual que tiende a duracionSimulacion

 plusP = plusP

 matriz1 = []

 matriz2 = []

 matriz3 = []

 matriz4 = []

 matrizLabo = matrizL

37

 for ind in nombrePh:

 edadNew = 0

 objeGene = nombrePh.get(ind)

 dni=objeGene.dni #el id o dni del que va a escribirse una nueva iteracion

 edad = objeGene.edad #la edad anterior

 edadNew = edad + 1 #esta será su edad ahora, para grabarla ahora

 objeGene.edad = edadNew

 objeGene.iteracion = tiempo

 # ERED: modulo central en decisiones ph() y asuntos economicos individuales

ph_ERED.ERealEDeseo(dni,edadNew,nombrePh,salarioMinimo,cobranRBU,rbuCapita,plu
sP,tiempo,pobl,diccDecisionGeneral,matrizLabo,objeGene)

 #podemos hacerla con MANY

 #señalar que la iteracion ya no será la ultima: vamos a grabar la nueva

 tiempoAnterior = tiempo- 1 #el "tiempo" actual es un año más que la ultima iteracion
grabada

 valorIterUlt=(dni,tiempoAnterior)

 matriz1.insert(dni,valorIterUlt)

 asignaIntencionalidad(dni,edad) #calcula la SUMA y cambia, si procede,
intencionalidad

 for i in objeGene.miDicPh.keys():

 iterGraba = []

 tupla3 = ()

 for ii in range (0,14):

 iterGraba.append(0)

 iterGraba[0] = dni

 iterGraba[1] = tiempo #tiempo Global: vueltas hasta duracionSimulacion

 iterGraba[2] = edadNew

 iterGraba[3] = i #actividad

38

 iterGraba[4] = objeGene.miDicPh[i][0] #va0

 iterGraba[5] = round(objeGene.miDicPh[i][1],2) #va1

 iterGraba[6] = round (objeGene.miDicPh[i][2],2) #va2

 iterGraba[7] = round(objeGene.miDicPh[i][3],2) #va3

 iterGraba[8] = int(objeGene.miDicPh[i][4]) #va4

 iterGraba[9] = int(objeGene.miDicPh[i][5]) #va5

 iterGraba[10] = int(objeGene.miDicPh[i][6]) #va6

 iterGraba[11] = int(objeGene.miDicPh[i][7]) #va7

 iterGraba[12] = objeGene.miDicPh[i][8] #va8

 iterGraba[13] = round(objeGene.miDicPh[i][9],2) #va9

 matriz2.insert(dni,tuple(iterGraba))

 #Grabacion datos economicos de la iteracion en tabla iteracionEcon

 lista2 = []

 for ii in range (0,20): #inicializa lista2

 lista2.append(0)

 lista2[0] = dni #dni

 lista2[1] = tiempo #iteracion

 lista2[2] = objeGene.edad #edad

 lista2[3] = objeGene.situlaboposi #situacion laboral

 lista2[4] = objeGene.antiguedad # antiguedad en esa situlaboposi

 lista2[5] = objeGene.climLabo #como se siente es ese puesto

 lista2[6] = 'S' #¿es la ultima?

 lista2[7] = objeGene.sumaVa3Año #suma va3

 lista2[8] = objeGene.sumaVa9Año

 lista2[9] = objeGene.palp #palp

 lista2[10] = objeGene.gastoAnyo #gasto anyo

 lista2[11] = objeGene.ingrxRBU

 lista2[12] = objeGene.ingrxTrabB #ingrx Trabajo báse

 lista2[13] = objeGene.plusProductividad #plus productividad

 lista2[14] = objeGene.ingrxTrab #suma de los anteriores ingresos

39

 lista2[15] = objeGene.ingrTotal if objeGene.ingrTotal != 0 else lista2[11] # ingrTotal =
ingrxTrab +ingrxRBU

 lista2[16] = objeGene.intencionalidad

 lista2[17] = objeGene.idFiscalFamilia

 lista2[18] = objeGene.dniPareja

 lista2[19] = objeGene.idFiscalEmpresa

 matriz3.insert(dni,tuple(lista2))

 lista4 = []

 for ii in range (0,2): #inicializa lista4

 lista4.append(0)

 lista4[0] = objeGene.edad

 lista4[1] = dni

 matriz4.insert(dni,tuple(lista4))

 print('Voy a grabar matriz1 de iteracionecon')

 sqlupdat2="Update iteracionecon Set ultima='N' where dni=%s and tiempo=%s"

 ph_herramientas.updateBD(sqlupdat2,matriz1)

 print('Voy a grabar matriz2 de iteracion General')

 sql = "INSERT INTO iteracion (dni,tiempo, edad, actividad ,\

 va0 , va1,va2, va3, va4, va5, va6, va7, va8, va9) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"

 ph_herramientas.insertBD (sql,matriz2)

 print('Voy a grabar matriz3 de iteracionecon')

 sql = "INSERT INTO tercerbd.iteracionecon (dni,tiempo, edad,situlabo,antiguedad,
climLabo,ultima,sumava3,sumava9,palp,\

gastoanyo,ingrxRBU,ingrxTrabB,ingrxPlusP,ingrxTrab,ingrTotal,intenciona,idFiscalFamilia,i
dPareja,idFiscalEmpresa) \

 VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s,
%s,%s,%s,%s,%s,%s,%s,%s,%s)"

 ph_herramientas.insertBD (sql,matriz3)

 print('Voy a grabar matriz4 de iteracion General')

40

 sqlupdat4="Update nacer Set edad =%s where id=%s "

 ph_herramientas.updateBD(sqlupdat4,matriz4)

 return

def asignaIntencionalidad(dni,edad):

 #Asigna y graba intencionalidad, en su caso, y GRABA sumaVa3 en ph().

 asignaIntencionalidad.llamadas += 1

 #Intencionalidad y Palp definen el movimiento de un ph()

 #en POO (parte declarativa del ph y en su miDicPh) y en tabla nacer está intencionalidad

 #en la tabla iteración en cada ph, en la fila 33

 #lo llama iteracionGeneral, justo despues de llamar a ER_ED

 def asignaInten(arquetipo,caracter,dni, suma,sumava9,edad):

 objeGene=nombrePh.get(dni)

 potencial = objeGene.potencial

 #habria que variar tabla nacer, nacerPI y reproducirse

 arqOscuFana = ['explorador','heroe','gobernante','rebelde'] #arquetipo

 arqDepresivo = ['inocente','cuidador','creador'] #arquetipo

 ciResi = ['1-Medio','2-Altos','3-Malto'] #todos cinco char

 caraF = ['amorfo','apatico','flematico'] ,#caracter

 caraBR = ['apasionado','sanguineo','sentimental','colerico'] #caracter

 oF=False

 depre=False

 ciRe = False

 inten = ''

 #debo afinar más

 if arquetipo in arqOscuFana:

 oF=True

 if arquetipo in arqDepresivo:

 depre=True

 if (potencial in ciResi) or (caracter in caraBR):

41

 ciRe = True

 #la intencionalidad cambia de vez en cuando

 if edad in [17,25,30,45,55,65]:

 if (suma <= 1 or sumava9 < 3) and oF:

 inten='Acabemos'

 elif 2 <= suma < 20 or 4<= sumava9< 60 or depre:

 inten='Busqueda'

 elif suma >= 20 or ciRe or sumava9 >=60 or oF:

 inten='Reforzar'

 elif edad >= 65 and (suma >= 20 or sumava9 >= 60):

 inten = 'Busqueda'

 else:

 #inten = objeGene.intencionalidad

 inten = 'Flotar' if (random.randint (1,11) < 6) or (caracter in caraF) else 'Busqueda'

 #Intencionaliodad está en TRES lugares: Ph(), iteracionecon, nacer

 #guardar en iteración, va9=intencionalidad y va3--> suma de los indices de EXITO de
sus actividades

 sql2='UPDATE tercerbd.iteracionecon SET sumava3=%s,sumava9=%s,intenciona=%s
Where dni=%s and edad=%s'

 valor2=(sumaVa3,sumaVa9,inten,dniLocal,edadLocal)

 ph_herramientas.updateUno(sql2,valor2)

 #en POO

 objeGene.intencionalidad = inten

 #objeGene.sumaVa3Año = sumaVa3 ya está grabado

 return inten

 def Suma(dni,edad):

 #suma va3 para las actividades activas de cada DNI por año de edad.- entre cero y
diez

42

 #va3 es el índice de éxito de ese año, de esa actividad activa: (va2/va4)*atractivo
personal

 valorSuma = ()

 sql1="select SUM(va3), SUM(va9) FROM tercerbd.iteracion where dni=%s and edad =
%s"

 valor1=(dni,edad)

 valorSuma = ph_herramientas.selectBD(sql1,valor1)

 return valorSuma[0][0] , valorSuma[0][1]

 #He adaptado el procedimiento general a UN solo caso. Habrá declaracionbes
redundantes...

 #toma dni y edad

 sumaVa3 = 0

 sumaVa9 = 0

 dniLocal=dni #ecibes el parametro

 edadLocal=edad #ecibes el parametro

 #se calcula la suma, por cada dni, de los indices de Exito, (va2/va4)*atractivopersonal,
de cada Actividad

 resultado, resulVa9 = Suma(dniLocal,edad)

 if resultado != None:

 sumaVa3 = round(resultado,2)

 if resulVa9 != None:

 sumaVa9 = round(resulVa9,2)

 #debe dar UN valor

 #Estructura dicSumas: {533: [(349.56, 69)],..,1588: [(2.8800000000000003, 9)], 1589:
[(2.79, 8)]}

 objeGene = nombrePh.get(dniLocal)

 objeGene.sumaVa3Año = sumaVa3

 objeGene.sumaVa9Año = sumaVa9

 arquetipo = objeGene.miDicPhBasi['arquetipo1']

 caracter = objeGene.miDicPhBasi['caracter1']

 if sumaVa3 != None:

43

 asignaInten(arquetipo,caracter,dniLocal, sumaVa3,sumaVa9,edadLocal)

 return

#INICIO SALIDAS

#FIN SALIDAS

#MAIN CÓDIGO

if __name__ == '__main__':

 ph_herramientas.insertBD.llamadas = asignaIntencionalidad.llamadas = 0

 historico = {} #se usa en sociedad()

 poblCont = {} #contabilidad de nacimientos y muertes...

 extincionSociedad=False

 pibViejo = 0

 tiempo = 0 #tenderá a duracionSimulacion

 #Borrado DB MySQL

 borrado()

 #Presentacion. Archivo de voz

 ph_pantallasES.preludioTraviata()

 #Pantalla captación datos iniciales

 datosIniciales=ph_pantallasES.capturaDatosIniciales()

 duracionSimulacion=int(datosIniciales[0])

 poblacionBegin=int(datosIniciales[1]) #poblacion Inicial. No cambia

 pobl=int(datosIniciales[1]) #poblacion que varia a cada vualta; ahora tienen el mismo
valor

 esperanzaEscolari=int(datosIniciales[2]) #para IDH. Esperanza años de escolarización

 anyosVidaMax = int(datosIniciales[3])

 VM = anyosVidaMax - 18 #se utiliza en tabla Actividades y para asignar actividad en
campo DuraMax

 cobranRBU = int(datosIniciales[4]) # 1 : la cobran todos; diferente de 1: solamente los >=
18

 salarioMinimo = int(datosIniciales[5])

 iAE = datosIniciales[6] #impuesto actividades económicas

44

 iSP = datosIniciales[7] #iSP: importancia relativa del sector publico respecto del
privado.

 #11400 es el coste INDIVIDUAL de las actividades asignadas a PI ; Todos son mayores
de 18 años: 25-40.-

 rbuCapita = 11400 if cobranRBU == 1 else 0

 pibCapita = 11400 #Comida, hijos, descanso, vestido, amistad arrojaría un total de
11400 unidades monetarias : minimo a producir

 pibNuevoSoc = pibCapita * poblacionBegin

#la sociedad, la comunidad, les provee de lo indispensable; menor de 14 años: 1/3:3800

 ingrxRBUSoc = rbuCapita * poblacionBegin

 #FIN datos iniciales pedidos a usuario o calculados x supuestos

 #info tabla actividades en regActividades;acceso global

 sqlselect= "Select * from actividades where id<%s"

 valorselect= (35,)

 regActi = ph_herramientas.recuperarTablaActividades()

 matrizLabo = []

 registroLabo = recuperarTablasitulaboposi()

 for indice,item in enumerate(registroLabo):

 matrizLabo.insert(indice,tuple(item))

 diccDecisionGeneral = formaDiccDecisionGeneral(regActi)

 #Tratamiento especial de Poblacion Inicial

 nacerPI(poblacionBegin, regActi)

 #graba en tabla nacer y en miDicPh

 atractivoPersonal() #graba en tabla nacer y tabla atractivo personal

 #necesito iniciar la tabla Sociedad para tiempo cero

 pibNuevoSoc,iAE,iSP =
ph_sociedad.Sociedad(esperanzaEscolari,pibNuevoSoc,cobranRBU,ingrxRBUSoc,iAE,iSP,
tiempo,nombrePh,pobl,anyosVidaMax)

45

 #la primer empresa

 formaEmpresa()

 for i in range (1,duracionSimulacion+1):

 if pobl >= 50:

 pAMuerte = 0

 tiempo = i

 print('Tratamiento general del año o iteración número: ', i)

 #solo los vivos fallecido='N' cumplen años, iteran

 registro = ph_herramientas.recuperarRegistroSociedad(tiempo-1)

 plusP = registro[21] #se toma la productividad GLOBAL (Soc) del año anterior

 plusP = int(plusP/pobl)

 #cada año forma una empresa (nada de Familia)

 formaEmpresa()

 pibViejo=pibNuevoSoc

 nacidos = reproducirse() #Tb se forman Familias

 muertos = muerte(tiempo)

 pAMuerte = calderaDesastres(pobl,tiempo) #generacion de crisis,
pandemias...desastres.

 pobl = pobl + nacidos - muertos -pAMuerte #población de la iteración

 poblCont[i] =[pobl,nacidos,muertos,pAMuerte]

 atractivoPersonal() #graba tabla atractivo personal

 iteracionGeneral(plusP,matrizLabo) #asigna intencionalidad, llama a ER_ED

 #sociedad llama a calculoIDH, calculo Gini...magnitudes macroeconómicas

46

 pibNuevoSoc,iAE,iSP =
ph_sociedad.Sociedad(esperanzaEscolari,pibNuevoSoc,cobranRBU,ingrxRBUSoc,iAE,iSP,
tiempo,nombrePh,pobl,anyosVidaMax)

 #grabará resultados de iteracion N, que serán leidos por la N+1 and so on

 datosReprPoblPib[i]=[pobl,nacidos,muertos,pibNuevoSoc]

 else:

 print('Tratamiento general del año o iteración número(Sociedad EXTINGUIDA): ', i)

 break

 if pobl >= 50:

 ph_salidas.tratamientoDatos(nombrePh,
datosReprPoblPib,poblCont,poblacionBegin) # Todas las salidas agrupadas

 ph_seleDist.main() #comparacion distribuciones Ingresos y Gastos. Algoritmo de
Amat

 sinfo()

 #session_info.show() #Creo NO funciona con spyder

 miConexion.close()

 print('llamadas aproximadas a
ph_herramientas.insertBD',ph_herramientas.insertBD.llamadas)

 print('llamadas para asignar intencionalidad',asignaIntencionalidad.llamadas)

 if pobl >= 100:

 print('La Sociedad se EXTINGUIÓ')

 print('HISTORICO Dif ingresos gastos en Organizacion, iAE e iSP----->',historico)

 print('Contabilidad de población',poblCont)

 print ("Esta es la última instrucción")

47

-*- coding: utf-8 -*-

"""

Created on 24/6/24

ERED debe ser el algoritmo por el que tomamos nuestras decisiones: hacemos esto y
dejamos de hacer aquello...

Son decisiones individuales que deben de tener en cuenta :

los deseos individuales, la situación familiar, amistades, conocidos...y económica.-
Intencionalidad y palp

@author: invat

"""

import random

import mysql.connector

import ph_herramientas

#Con los imports activos salia error debido a la circularidad

#Opte por eliminar estas importaciones y poner el código -duplicandolo-

#Duplicado

miDicActividades={1:'Comer',2:'Pareja',3:'Hijos',4:'Descanso',5:'Sexo',6:'Salud',7:'Amistad',
8:'Estudio',\

 9:'Preparar oficio',10:'Trabajo',11:'Vestirte',12:'Casa',13:'Coche',\

 14:'Milit pol-sindi',15:'Deporte',16:'Adicciones', 17:'Escribir leer',18:'Asac recreati',\

 19:'Satis Curiosid',20:'Jugar Azar',21:'Familia',22:'Manualidades',23:'Militancia
ONG',24:' Arte Ciencia',\

 25:'Viajar Emigrar', 26:'Seguir la moda',27:'Ejercer poder',28:'Investigar',\

 29:'Emprender',30:'Deporte riesgo',31:'Lider público',32:'Espiritualidad',33:'Estudios
medios',34:'Estudios superiores'}

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

def recuperarTablasitulaboposi():

 #se cargan los 32 primeros registros de la tabla actividades

48

 sqlselect= "Select * from tercerbd.situlaboposi "

 regActi = ph_herramientas.selectBDNoWhere(sqlselect)

 regis = [list(a) for a in regActi]

 return regis

#FIN duplicado

def
ERealEDeseo(dni,edad,nombrePh,salarioMinimo,cobranRBU,rbuCapita,plusP,tiempo,pob
l,diccDecisionGeneral,matrizL,objeGene):

 #ph_ER_ED.llamadas += 1

 #ER-ED trabaja con su code y con sus funciones internas

 #paso de variables y funcion del return: normal

 #recuerda: las variables de la función externa pueden ser consultadas en las internas

 #en funciones internas pueden modificar variables externas si usas:'nonlocal'

 #Actividades por edad

 def actividadesMenor18():

 #en miDicPh lo que está escrito se mantiene, está en RAM

 #en iterGrabaLocal esta en MySQL, se ha de grabar cada iteración

 numActi = [15,17,19,20,26]

 if 11 <= edad <= 15 :

 #deja miDicPh , añadiendo de 1 a 3 voluntarias no Maslow

 for i in range (1,3):

 ii=0

 azar0=random.randint(0,4) # 0 a 4 ,inclusive

 #listas , tuplas...comienzan con CERO

 #15 depporte, 19 curiosidad, 20 jugar, 17 escribir leer,26 seguir moda

49

 ii = numActi[azar0]

 if ((regActividades[ii-1][10] in miAC) or (regActividades[ii-1][11] in miAC)):

 cargarActiDat1245(dni,ii)

 elif edad >15 :

 decisionUnidades(diccDecisionGeneral,'Deporte')

 return

 def actividadesMayor17Menor65():

 #la 1,4,6,7,8,9,11 YA están escritas en el diccionario

 #el trabajo Se incluye APARTE

 #decisiones: es decir no están puestos de serie al nacer

 #decidirSobre podía ser muyyyyy largo

 #A los que en reproducir se les ha puesto un idFiscalFamilia se les pone en actividad
Familia. Manu militari

 if objeGene.idFiscalFamilia != 0:

 try:

 cargarActiDat1245(dni,21)

 except KeyError:

 print('Ya estaba dada de alta la actividad')

 decidirSobre = {2:'Pareja',3:'Hijos', 12:'Casa',\

 13:'Coche',15:'Deporte' }

 dictPh = objeGene.miDicPh

 #extrae los que estan en decisirSobre y no estan en miDicPh

 dict3 = set(decidirSobre) - (set(dictPh))

 dict4 = {}

 for item in dict3:

50

 valor = decidirSobre[item]

 dict4[item] = valor

 decisionUnidades(diccDecisionGeneral,valor)

 #Ahora de los que están en decidirSobre y tambien estan en miDicPh: se envian a
control

 dict3 = set(decidirSobre) & set(dictPh)

 for item in dict3:

 valor = decidirSobre[item]

 dict4[item] = valor

 controlUnidades(item)

 if edad ==25 or edad ==35 or edad == 45 or edad == 55:

 #va a intentar añadir alguna actividad, tres veces: maximo 9 actividades

 for i in range (1,5): #vueltas:1,2,3,4

 azar0=random.randint(14,34) #apuede salir el 14 e intermedios hasta el 34,
inclusive.-

 for ii in range (azar0,35): #llega a 31- del 0 al 31 van 32

 if (regActividades[ii-1][10] in miAC) or (regActividades[ii-1][11] in miAC):

 if ii not in objeGene.miDicPh:

 i = ii #num actividad

 cargarActiDat1245(dni,i)

 continue #para salirse del for

 return

 def actividadesMayor64():

 if edad>=65 :

 if 2 not in objeGene.miDicPh:

 decisionUnidades(diccDecisionGeneral,'Pareja')

 if 15 not in objeGene.miDicPh:

 decisionUnidades(diccDecisionGeneral,'Deporte')

 if 25 not in objeGene.miDicPh:

51

 decisionUnidades(diccDecisionGeneral,'Viajar Emigrar')

 decisionDistribuyeTuTiempo()

 return

 #herramientas de ayuda y control actividades

 def cargarActiDat1245(objDni,numActi):

 #DAR DE ALTA UNA ACTIVIDAD -numActi- EN miDicPh() del ph(objDni)

 objeGene=nombrePh.get(objDni)

 i = numActi

 #actvidades que tienen 0 en coste de tiempo

 regActividades[i-1][5] = random.randint(8,25) if regActividades[i-1][5] == 0 else
regActividades[i-1][5]

 objeGene.miDicPh[i] = ['X',0,0,0,0,0,0,0,0,0]

 objeGene.miDicPh[i][0]=regActividades[i-1][1] #nombre Actividad

 objeGene.miDicPh[i][1]=regActividades[i-1][4] #coste um

 objeGene.miDicPh[i][4]=regActividades[i-1][5] #coste tiempo

 objeGene.miDicPh[i][7]=regActividades[i-1][2] #riesgo actividad

 return

 def actividadesxArquetipo(arqueti):

 #nonlocal miDicPh y nonlocal iterGrabaLocal, no necesario

 #Aunque viene todas las iteraciones, solo se asigna UNA vez

 diccioArquet={'amigo':[7,16],'cuidador':[23] ,'explorador':[25] ,'heroe':[15,30] ,\

 'inocente':[26] ,'rebelde':[14] ,'sabio': [19],'gobernante':[27,31],\

 'creador':[17,24,28] ,'bufon':[18],'mago':[8,29],'amante':[5]}

 sumaExtra = {'amigo':[5],'cuidador':[7] ,'explorador':[7] ,'heroe':[8] ,'amante':[2],\

 'inocente':[5] ,'rebelde':[5] ,'sabio': [10],'gobernante':[5],\

 'creador':[8] ,'bufon':[2],'mago':[7] }

52

 arquetipo = arqueti

 if edad == 10 or edad == 18 :

 try:

 for item in diccioArquet[arquetipo]:

 i = item #si hay dos o 3 items, solo se toma el primero

 cargarActiDat1245(dni,i)

 objeGene.miDicPh[i][3] += sumaExtra[arquetipo][0] #indice éxito Deporte

 except KeyError:

 pass

 return

 def actualizaContadores():

 #en objeGene está el ph CONCRETO en cada iteración

 #añade un año de practica a las Actividades activas que no sean 2,5

 #Indice de éxito de cada Actividad (antes trae el indice atractivo personal)

 excepciones=[2,5] #pareja y sexo: tienen azar.

 estadosInactivos=['X','N']

 atracPerso={1:0,2:0,3:0,4:0,5:0,6:0,7:0, 8:0,9:0,10:0,11:0,\

 12:0,13:0,14:0,15:0,16:0, 17:0,18:0,19:0,20:0,\

 21:0,22:0,23:0,24:0,25:0,26:0,27:0,28:0,29:0,30:0,31:0,32:0}

 #en este diccionario debe meterse indice atractivoPersonal de cada ph

 sql1='select actividad, atractivo from atractivopersonal where dni=%s'

 valor1=(dni,)

 registro1=ph_herramientas.selectBD(sql1,valor1) #da LISTA de TUPLAS

 #pasar tuplas a diccionario

 for i in range(1, 35): # uno mas: son 34 significativas

 atracPerso[i] = registro1[i-1][1] #

 for i in objeGene.miDicPh.keys(): #itera actividades activas

53

 if i not in excepciones:

 if objeGene.miDicPh[i][0] not in estadosInactivos:

 objeGene.miDicPh[i][2] += 1

 numerador = int(objeGene.miDicPh[i][2]) #va2

 try:

 # indiceExito de cada Actividad (menos las tres excluidas)

 if numerador >= objeGene.miDicPh[i][4]:

 objeGene.miDicPh[i][4] = numerador #cociente será la unidad; intenta evitar
efecto de Actividades con va2 "raro"

 objeGene.miDicPh[i][3] =
round(numerador/objeGene.miDicPh[i][4],2)*(atracPerso[i])

 except ZeroDivisionError:

 print("No se ha podido realizar la división pues va4 es nulo")

 objeGene.miDicPh[i][6] += 1 #para índice eficacia

 numerad = int(objeGene.miDicPh[i][6]) #va5 max deseado, va6 logrado indice
eficacia: va6/va5 * atracPerso

 try:

 # indiceEficacia de cada Actividad (menos las tres excluidas)

 if numerad >= objeGene.miDicPh[i][5]:

 objeGene.miDicPh[i][5] = numerad #cociente será la unidad; intenta evitar
efecto de Actividades con va5 = 0

 objeGene.miDicPh[i][9] =
round(numerad/objeGene.miDicPh[i][5],2)*(atracPerso[i])

 except ZeroDivisionError:

 print("No se ha podido realizar la división pues va5 es nulo")

 return

 def experienciasActividades():

 #en objeGene está el ph CONCRETO

 #Van añadirse actividades TIPO: Optativas

 #excepciones=[1,2,3,4,5,6,7,8,9,10,11,12,13,21,] #Son TIPO = básicas o normales

 #actividadesPosiblesUnidades
=[2,3,5,7,9,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32] #25
actividades

54

 posiblesActividades=[14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34]

 estadosInactivos=['X','N']

 # los estadosInactivos son ['X','N']

 #elimino actividad con poco indiceExito de la actividad

 nombrePhClavesCongeladas = []

 nombrePhClavesCongeladas = list(objeGene.miDicPh)

 for i in nombrePhClavesCongeladas :

 if objeGene.miDicPh[i][0] not in estadosInactivos:

 if i in posiblesActividades and (objeGene.miDicPh[i][3] < 0.3 or
objeGene.miDicPh[i][9] < 0.3): #indiceExito o indiceEficacia bajo

 print('HE QUITADO',objeGene.miDicPh[i][0])

 objeGene.miDicPh[i][0] = 'N' #hiciste esta actividad

 ii = i

 #eliminaste una Actividad, intentamos asignarte otra por tres veces

 #todas las incluidas como posibles estan en tipo: Optativas

 dentro=True

 vez=0

 while dentro and vez < 4:

 azar0=random.randint(14,31)

 vez +=1

 if (azar0 in posiblesActividades) and (ii != azar0): # asegura que la actividad
quitada se vuelva a poner, creo

 i = azar0 #num actividad

 cargarActiDat1245(dni,i)

 dentro = False

 print('HE AÑADIDO', objeGene.miDicPh[i][0])

 return

 def decisionUnidades(diccDecisionGeneral,deciSobre):

 #deciSobre debe ser del tipo: 'pareja', 'hijos'...

55

 #X: No se está ejecutando, N: se ejecutó ,pero ahora no.- Si tiene nombre actividad: se
está ejecutando

 #si asigna es menor: se queda como estuviera

 #decisionGeneral [actividad, azarMayorq,azarUnidad: num de unidades max a que se
aspira]

 #actividadesPosiblesUnidades
=[2,3,9,12,13,14,15,16,18,20,22,23,24,26,28,29,30,31,32]

 #Pde cada actividad posible tomamos su nombre, su número,el numero que debe
superarse, num máximo unidades, la duración antes de ser obsoleto

 #se toma de la tabla actividades y se mete en el diccionario: decisionGeneral

 #decisionGeneral =
{'Pareja':[2,6,10],'Hijos':[3,1,10],'Sexo':[5,3,2],'Casas':[12,4,4],'Coches':[13,1,3],\

 # 'Familia':[21,6,1],'Viajar':[25,1,1]}

 decisionGeneral = diccDecisionGeneral

 actividad = decisionGeneral[deciSobre][0]

 azarMayorq = decisionGeneral[deciSobre][1]

 azarUnidad = decisionGeneral[deciSobre][2]

 obsolescencia = decisionGeneral[deciSobre][3]

 asigna=random.randint(1,9)

 if asigna > azarMayorq:

 i = actividad #num actividad

 cargarActiDat1245(dni,i)

 objeGene.miDicPh[actividad][0]=miDicActividades[actividad]

 if azarUnidad != 1:

 azar = random.randint(1,azarUnidad)

 if actividad == 3 or actividad == 12 or actividad == 13:

 objeGene.miDicPh[actividad][5]=azar #va5)

 else:

 objeGene.miDicPh[actividad][4]=azar #va4)

 return

 def decisionDistribuyeTuTiempo():

56

 #Indicar que es una forma de proceder. Puede ampliarse

 azar=random.randint(0,5)

 if azar>2:

 i = 22 #num actividad #manuealidades

 cargarActiDat1245(dni,i)

 i = 18 #num actividad #asoc recreativas

 cargarActiDat1245(dni,i)

 return

 def controlUnidades(actividad):

 #hijos,casas,coches,ochomiles...Unidades.- V(-9.1)

 #Si cumplen objetivo, escribe N; si aún no lo cumple= suma una Unidad

 i = actividad

 deseadas = objeGene.miDicPh[i][5]

 habidas = objeGene.miDicPh[i][6]

 diferencia = deseadas-habidas

 if diferencia > 0 :

 objeGene.miDicPh[i][6] += 1 #vañade una unidad

 else:

 objeGene.miDicPh[i][0] ='N' # 'N' : ya han tenido las Unidades que deseaban

 return

 def controlCambioEmpresa():

 #no me caliento la cabeza

 #miDicPh[10][6] ahí debe estar el num de años que lleva en la empresa

 cambia=random.randint(1,9)

 miAntiguedad = int(objeGene.miDicPh[10][6])

 antiguedadMediaEmpresa=10

 if antiguedadMediaEmpresa > miAntiguedad :

 objeGene.miDicPh[10][6] = miAntiguedad + 1

 #Sigue en la empresa

57

 elif antiguedadMediaEmpresa <= miAntiguedad and cambia <6:

 objeGene.miDicPh[10][6] = miAntiguedad + 1

 #Sigue en la empresa

 elif antiguedadMediaEmpresa <= miAntiguedad and cambia >=6:

 #cambia de empresa

 baja_Empresa()

 altaEmpl_Empr()

 return

 def independizarse():

 #los hijos pueden formar otra familia

 sql="UPDATE organiza_miembros SET esBaja = 'S' where id_nacer=%s"

 valor=(dni,)

 ph_herramientas.updateUno(sql,valor)

 return

 #temas de TRABAJO

 def asignaTrabajo(edad,riesTole,dni,rbuCapita,plusP,matrizLabo):

 #NO paso objeGene pues es función interna

 #segun antiguedad cambia trabajo y asigna cuantias según tabla empleos y
situaciones

 def rutina1(PlusP,azar,rbuCap):

 azarCuan = azar

 PlusP = PlusP

 rbuCapita = rbuCap

 objeGene.climLabo = 'Regul' #a modificar

 objeGene.antiguedad = 1 if (objeGene.antiguedad == 0 or objeGene.antiguedad ==
9) else objeGene.antiguedad + 1

 if objeGene.antiguedad == 1 or objeGene.antiguedad == 9 : #Si tiene 1: instrucción
anterior era cero

 azarProf = random.randint(7,206)

 #en tabla va de 8 a 207, pero en lista va de 0-206: matriz[6][0]=7 (S-dificil)

58

 #Si es S-dificil alto salario

 if objeGene.situlaboposi == 7 :

 objeGene.ingrxTrabB = int(matriz[7][2])

 elif objeGene.situlaboposi != 7 :

 azarProf = random.randint(7,206)

 if (objeGene.antiguedad == 1 or objeGene.antiguedad == 9):

 objeGene.ingrxTrabB = int(matriz[azarProf][2]/azarCuan)

 objeGene.situlaboposi = matriz[azarProf][0]

 elif 2 <= objeGene.antiguedad < 9:

 objeGene.ingrxTrabB = objeGene.ingrxTrabB

 objeGene.plusProductividad = PlusP + (PlusP/random.randint(8,10)) -
(PlusP/random.randint(5,10)) \

 if objeGene.plusProductividad < objeGene.ingrxTrabB else
objeGene.ingrxTrabB/10

 objeGene.ingrxTrab = objeGene.ingrxTrabB + objeGene.plusProductividad

 objeGene.ingrxRBU = rbuCapita

 objeGene.ingrTotal = objeGene.ingrxTrab + objeGene.ingrxRBU

 return

 def rutina2():

 objeGene.ingrxTrab = objeGene.ingrxTrabB + objeGene.plusProductividad

 objeGene.ingrxRBU = rbuCapita

 objeGene.ingrTotal = objeGene.ingrxTrab + objeGene.ingrxRBU

 return

 #MAIN asignaTrabajo()

 edad = edad

 rbuCapita = rbuCapita if edad >= 14 else (rbuCapita/3)

 riesgo=riesTole

 riesgoBajo=(0,1,2,3)

 riesgoAlto=(4,5)

 PlusP = plusP

 matriz = matrizLabo

59

 azar=random.randint(1,9) #1 y 9 incluidos

 if 1 <= edad < 18:

 objeGene.ingrxTrabB = 0

 objeGene.plusProductividad = 0

 rutina2()

 objeGene.situlaboposi = 1 if edad < 14 else 2

 elif 18 <= edad < 65 and riesgo in riesgoBajo :

 if 18 <= edad < 25:

 azarCuan = random.randint(5,6)

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 25 <= edad <32:

 azarCuan = random.randint(4,5)

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 32 <= edad <40:

 azarCuan = random.randint(3,5)

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 40 <= edad <50:

 azarCuan = random.randint(2,4)

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 50<= edad < 65:

 azarCuan = random.randint(1,3)

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 18 <= edad < 65 and riesgo in riesgoAlto :

 if azar <7:

 azarCuan = random.randint(1,4)

60

 rutina1(PlusP,azarCuan,rbuCapita)

 elif 7 == azar == 8 :

 #Casos raro:enfermedad crónica, accidente laboral...

 azarCuan = random.randint(4,5)

 objeGene.ingrxTrabB = int(matriz[5][2]/azarCuan)

 objeGene.plusProductividad = 0

 rutina2()

 objeGene.situlaboposi = 5

 objeGene.antiguedad = 0 #infancia y jubilados no cuenta la antiguedad

 elif azar ==9 and objeGene.intencionalidad=='acabemos':

 objeGene.ingrxTrabB = 0

 objeGene.plusProductividad = 0

 rutina2()

 objeGene.situlaboposi = 4 #situación que impide trabajar

 objeGene.antiguedad = 0 #infancia, oscuros y jubilados no cuenta la antiguedad

 elif edad>=65: #debes crear los IMPUESTOS, no todos pueden tener la contributiva

 #le toca por edad, pero ¿y si es NO contributiva?

 azarCuan = random.randint(1,3)

 objeGene.ingrxTrabB = int(matriz[5][2]/azarCuan)

 objeGene.plusProductividad = 0

 rutina2()

 objeGene.situlaboposi = 5

 objeGene.antiguedad = 0 #infancia y jubilados no cuenta la antiguedad

 return

 def asignaTrabajoSDificil():

 #edad,riesTole y otras externas las pilla por eso mismo: son externas y puede leerlas

 #Creo que objeGene es conocido cada este dni

 trabajoAsignado=''

 actividad=''

61

 azar=random.randint(0,13) #ambos inclusive

 actividadSdificil=(5,10,14,15,17,23,24,27,28,29,30,31,32,34)

tablaACSdificil=('creador','cuidador','sentimental','heroe','rebelde','gobernante','mago','apasi
onado','flematico','sanguineo','amante')

 #colerico no está...hay muchos....Estos son los arquetipos que pueden dar lugas a S-
dificil

 ruleta=azar #elige la actividad S-dificil que se va a chequear: solamente una

 i = actividadSdificil[ruleta]

 check=regActividades[i-1][10]

 #si check esta en las dos listas

 if objeGene.situlaboposi == 7 and 0 < objeGene.antiguedad < 8:

 pass

 elif objeGene.situlaboposi == 7 and 0 < objeGene.antiguedad == 8:

 objeGene.situlaboposi = 3 #se va al paro

 objeGene.antiguedad = 1

 return

 #elif ((check in tablaACSdificil) and (check in miAC) and (riesTole >= regActividades[i-
1][2] or objeGene.potencial == '3-Malto')) :

 elif (check in tablaACSdificil and objeGene.potencial == '3-Malto') :

 trabajoAsignado = 'S-dificil'

 actividad = regActividades[i-1][1]

 objeGene.situlaboposi = 7 # es la clave de S-Dificil en la tabla situlaboposi

 objeGene.antiguedad = 1

 else:

 pass

 return trabajoAsignado, i,actividad

 def altaEmpl_Empr():

62

 #Por un doble random mete al trabajador en una empresa SI no está activo en alguna,
es decir esBaja ='S' o es la PRIMERA

 sql = "Select count(*) from organiza_miembros where id_nacer = %s and esBaja = 'N'"

 valor = (dni,)

 existeEmpr = ph_herramientas.selectBD(sql,valor) #count debería ser cero ó uno

 if existeEmpr[0][0] == 0 : #no tiene empresa activa; si >>0, entonces tiene empresa:
control

 dentro=True

 while dentro:

 tipo = ['industria','servicios','campo','enseñanza','sanidad',\

 'software','seguridad','investigacion','finanzas','administración']

 azar = random.randint(0,9)

 tipo_Empresa = tipo[azar]

 sql="SELECT dniFiscal from organizaciones where tipo=%s"

 valor=(tipo_Empresa,)

 empresas_posibles = ph_herramientas.selectBD(sql,valor)

 limite = len(empresas_posibles)

 if limite >=1:

 dentro = False

 azar_empresa = random.randint(0,limite)

 idFiscal_Empr = empresas_posibles[azar_empresa-1] [0]

 sql="INSERT INTO organiza_miembros (idFiscal,id_nacer,tipo) VALUES (%s,%s,%s)"

 valor = (idFiscal_Empr, dni,tipo_Empresa)

 ph_herramientas.insertUno(sql,valor)

 objeGene.idFiscalEmpresa=idFiscal_Empr #ya es distinto de cero; empresa actual

 return

 def baja_Empresa():

 idBaja = objeGene.idFiscalEmpresa

 idDni = objeGene.dni

 sql1 = "UPDATE organiza_miembros SET esBaja = 'S' WHERE idFiscal=%s and
id_nacer= %s and esBaja = 'N'"

63

 valor1=(idBaja,idDni)

 ph_herramientas.updateUno(sql1,valor1)

 return

 #Economia Individual

 def formaGasto():

 #acumula todos los gastos de todas las actividades del año

 gastoAnyo= 0

 convenciones=('X','N') #he quitado S-dificil

 for ii in objeGene.miDicPh:

 if objeGene.miDicPh[ii][0] not in convenciones:

 gastoAnyo=gastoAnyo+objeGene.miDicPh[ii][1]

 gastoAnyo=int(gastoAnyo)

 return gastoAnyo

 #(MAIN de ER_ED)

 #Se llama por CADA ph seleccionado, desde edad General

 dni = dni

 edad = edad

 plusP = plusP

 tiempo = tiempo

 #decisionGeneral = diccDecisionGeneral

 miAC = []

 arquetipo = ''

 regActivi = ph_herramientas.recuperarTablaActividades() #no tiene sentido recuperarla
1000 veces

 regActividades = [list(a) for a in regActivi]

 matrizLabo = matrizL

 objeGene = objeGene

64

 #grabo en el ph de POO la edad

 objeGene.iteracion = tiempo # tiempo es la iteracion

 dni = objeGene.dni

 edad = objeGene.edad

 #los dos arquetipos y los dos caracteres

 miAC.append(objeGene.miDicPhBasi['arquetipo1'])

 miAC.append(objeGene.miDicPhBasi['arquetipo2'])

 miAC.append(objeGene.miDicPhBasi['caracter1'])

 miAC.append(objeGene.miDicPhBasi['caracter2'])

 riesTole = objeGene.riesgoTolerancia

 #fallecido=objeGene.riesgoTolerancia

 arquetipo = miAC[0] #le pasa arquetipo1 al actividadesxArquetipo

 if 1 <= edad < 18:

 actividadesxArquetipo(arquetipo) #todos los años para que sume a lo
actualizacionContadores

 actividadesMenor18()

 elif 18 <= edad < 65:

 altaEmpl_Empr() if objeGene.idFiscalEmpresa == 0 else controlCambioEmpresa()

 actividadesxArquetipo(arquetipo)

 #mira los indices de exito de algunas actividades y deja los mayores, elimina los <5 e
intenta asignar

 experienciasActividades()

 actividadesMayor17Menor65()

 elif edad>=65:

 experienciasActividades()

 actividadesMayor64()

 if 18 <= edad < 65 and objeGene.potencial == '3-Malto' and objeGene.situlaboposi != 7:

65

 asignaTrabajoSDificil() #se asigna por actividades; una vía diferente al trabajo. Si se le
asigna: en def rutina1() se contempla

 asignaTrabajo(edad,riesTole,dni,rbuCapita,plusP,matrizLabo) #asigna tb ciudadania y
jubilacion

 #objeGene concreto: actualizo contadores miDicPh (va3):en Actividades activas

 actualizaContadores()

 #todo es relativo al individuo, al ph() en curso

 #ingresoRBU = ingresoxCiudadania() #deberia estar fuera de este modulo, como una
asignación segun el año anterior

 #ingrxTrabB,ingrxTrab,ingresoPlusP = ingresoxTrabajo(trabajo)

 ingrTotal = objeGene.ingrTotal #

 gastoAnyo = formaGasto()

 objeGene.palp = objeGene.palp + int(ingrTotal)-int(gastoAnyo) #NO Considera
ACTIVOS...es el AHORRO ACUMULADO

 objeGene.gastoAnyo = gastoAnyo # caractwer anual

 return

#FIN DE ER_ED

66

-*- coding: utf-8 -*-

"""

Created on Sábado 24/06/2024

ph_pantallasES.py

HOSS (Human Organizations Simulation Start) -9

José Quintás Alonso

@author: invat

"""

import tkinter as tk

from tkinter import messagebox

from tkinter import Label, Frame, Entry, Button,Text,INSERT

from playsound import playsound

from matplotlib.figure import Figure

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

import matplotlib.pyplot as plt

import os

import webbrowser

from PIL import Image,ImageTk

datosIniciales=[]

datosSalida=[]

def preludioTraviata():

 #utilizando Tkinter Preludio de la aplicación, esplicar, acceder a Internet

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación de una Sociedad de ph(). Versión -7')

 #Frame

67

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="200",height="100")

 def playMp1():

 playsound('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python ph-
7/2.mp3')

 def playMp4():

 #aquí irá la dirección de Onuglobal

 webbrowser.open('https://onuglobal.files.wordpress.com/2023/10/hoss16102023-
1.mp4')

 def playMp3():

 playsound('https://onuglobal.files.wordpress.com/2023/10/hoss.mp3')

 def linkBotonGauss():

 webbrowser.open('https://www.geogebra.org/m/Wbb6Sk5C')

 def linkBotonGamma():

 webbrowser.open('https://www.geogebra.org/m/yCZgR3dh')

 def funcionBotonSS():

 raiz.destroy()

 img = Image.open('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python
ph-7/altavoz.jpg')

 img = img.resize((50, 50))

68

 img = ImageTk.PhotoImage(img)

 playMp1_button = Button(miframe,image=img, text="Audio
explicativo",command=playMp1)

 playMp1_button.pack()

 playMp1_button.pack()

 playMp1_text = tk.Label (miframe,text="Audio explicativo V: -7")

 playMp1_text.pack()

 playMp4_button = Button(raiz, text="Ver post y video descriptivo de HOSS V:-10",
command=playMp4)

 playMp4_button.pack(pady=5)

 playMp3_button = Button(raiz, text="Agradecimientos", command=playMp3)

 playMp3_button.pack(pady=5)

 botonMostrar=Button(raiz,text="Click para ir a Internet: distribución
Gauss",command=linkBotonGauss)

 botonMostrar.pack()

 botonURL=Button(raiz,text="Click para ir a Internet: función
Gamma",command=linkBotonGamma)

 botonURL.pack()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

 return

def capturaDatosIniciales():

 #Datos iniciales pedidos al usuario

 def verificar_numeros():

 numero1 = int(entry_numero1.get())

 numero2 = int(entry_numero2.get())

69

 numero3 = int(entry_numero3.get())

 numero7 = int(entry_numero7.get())

 numero8 = int(entry_numero8.get())

 numero9 = int(entry_numero9.get())

 numero10 = int(entry_numero10.get())

 numero11 = float(entry_numero11.get())

 if 25 <= numero1 <= 200 and 25 <= numero2 <= 2000 and 10<= numero3 <= 20 \

 and 60<= numero7 <=85 and (numero8 == 0 or numero8 == 1) and 500<= numero9
<=3001 and \

 10 <= numero10 <= 50 and 0.001 <= numero11 <= 1000 :

 messagebox.showinfo("Validación exitosa", "¡Las entradas son válidos!")

 btn_salir["state"] = tk.NORMAL

 else:

 messagebox.showerror("Error de validación", "¡Las entradas no cumplen con los
requisitos!")

 def salir():

 #Pongo los Entryes en la lista datosIniciales

 datosIniciales.append(entry_numero1.get()) #posicion cero

 datosIniciales.append(entry_numero2.get())

 datosIniciales.append(entry_numero3.get())

 datosIniciales.append(entry_numero7.get()) #posicion 6

 datosIniciales.append(entry_numero8.get()) #posicion 7

 datosIniciales.append(entry_numero9.get()) #posicion 8

 datosIniciales.append(entry_numero10.get()) #posicion 9

 datosIniciales.append(entry_numero11.get()) #posicion 10

 ventana.destroy() #salir

 # Crear la ventana principal

70

 ventana = tk.Tk()

 ventana.title("Validación de números")

 ventana.geometry("800x800")

 label_numero0 = tk.Label(ventana, text = "Introducir números, validar, introducir Datos y
Salir")

 label_numero0.pack()

 label_numero00 = tk.Label(ventana, text = "Los valores de 'sociedad' deberian de
obtenerse del desarrollo tecnologico, organizativo y del capital disponible")

 label_numero00.pack()

 # Etiqueta y campo de entrada para el primer número

 label_numero1 = tk.Label(ventana, text = "Dos Datos necesarios para ejecutar la
aplicación",)

 label_numero1.pack()

 label_numero1 =tk.Label(ventana, text="Número de años simulación (25-200) :")

 label_numero1.pack()

 entry_numero1 = tk.Entry(ventana)

 entry_numero1.pack()

 # Etiqueta y campo de entrada para el segundo número

 label_numero2 = tk.Label(ventana, text="Población inicial (25-2000) :")

 label_numero2.pack()

 entry_numero2 = tk.Entry(ventana)

 entry_numero2.pack()

 # Etiqueta y campo de entrada para el tercer número

 label_numero3 = tk.Label(ventana, text = "DATOS INICIALES")

 label_numero3.pack()

 label_numero3 = tk.Label(ventana, text="Años escolarización (10-20) -sociedad:")

 label_numero3.pack()

 entry_numero3 = tk.Entry(ventana)

 entry_numero3.pack()

71

 # Etiqueta y campo de entrada para el cuarto número

 # Etiqueta y campo de entrada para el quinto número

 # Etiqueta y campo de entrada para el sexto número

 # Etiqueta y campo de entrada para el septimo número

 label_numero7 = tk.Label(ventana, text="Años medios de Vida (60-85) -sociedad:")

 label_numero7.pack()

 entry_numero7 = tk.Entry(ventana)

 entry_numero7.pack()

 # Etiqueta y campo de entrada para el octavo número

 label_numero8 = tk.Label(ventana, text="Reciben RBU: Nadie (0), Todos(1)-sociedad:")

 label_numero8.pack()

 entry_numero8 = tk.Entry(ventana)

 entry_numero8.pack()

 # Etiqueta y campo de entrada para el noveno número

 label_numero9 = tk.Label(ventana, text="Salario mínimo (500-3001) -sociedad:")

 label_numero9.pack()

 entry_numero9 = tk.Entry(ventana)

 entry_numero9.pack()

 # Etiqueta y campo de entrada para el décimo número

 label_numero10 = tk.Label(ventana, text="Impuesto Actividades Económicas (10-50) -
sociedad:") #iAE

 label_numero10.pack()

72

 entry_numero10 = tk.Entry(ventana)

 entry_numero10.pack()

 # Etiqueta y campo de entrada para el undécimo número

 label_numero11 = tk.Label(ventana, text="Masa monetaria sector Privado/Masa
monetaria sector Sector Público igual a: 0,001-1000) -sociedad:") #iSP

 label_numero11.pack()

 entry_numero11 = tk.Entry(ventana)

 entry_numero11.pack()

 # Botón para verificar los números

 boton_verificar = tk.Button(ventana, text="Verificar", command=verificar_numeros)

 boton_verificar.pack()

 btn_salir = tk.Button(ventana, text="Salir", command=salir, state=tk.DISABLED)

 btn_salir.pack()

 ventana.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

 return datosIniciales

def capturaDatosSalida():

 #utilizando Tkinter, tomo dos datos (año de inicio y población inicial)

 #Se los paso a los siguientes procedimientos

 #podrian ampliarse los campos que se piden, habría más parametros de DISEÑO

 raiz=tk.Tk() #creo una variable

 raiz.geometry("700x400")

73

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 miVariable=tk.StringVar() #los parentesis, fundamentales

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 #miframe.config(width="1300",height="700")

 miframe.propagate(0)

 miframe.config(width="650",height="350")

 instFrame=Frame() #Frame de instrucciones

 instFrame.pack() #empaquetar

 instFrame.config(bg="blue")

 #miframe.config(width="1300",height="700")

 instFrame.propagate(0)

 instFrame.config(width="650",height="350")

 #witges text y button, nuestro objetivo

 miLabelText=Label(instFrame, text="Consideraciones")

 miLabelText.grid(row=0,column=0)

 miEntryText=Text(instFrame,width=60,height=3)

 miEntryText.grid(row=1,column=0)

 miEntryText.insert(INSERT,"Se ejecutan TODAS las opciones")

 miLabelA=Label(miframe, text=" Elija un 'ph' válido para conocer su estado a través de
la impresora")

 miLabelA.grid(row=1,column=0,sticky="e",padx=15,pady=15)

 miEntryPh=Entry(miframe,textvariable=miVariable)

 miEntryPh.grid(row=1,column=1)

74

 miLabelB=Label(miframe, text="Elija un 'ph' válido para conocer su último estado de
Actividades")

 miLabelB.grid(row=2,column=0,sticky="e",padx=15,pady=15)

 miEntryHijo=Entry(miframe)

 miEntryHijo.grid(row=2,column=1)

 miLabelC=Label(miframe, text="Para un año concreto, ¿cual es el palp de los vivos?")

 miLabelC.grid(row=3,column=0,sticky="e",padx=15,pady=15)

 miEntryPalp=Entry(miframe)

 miEntryPalp.grid(row=3,column=1)

 miLabelD=Label(miframe, text="Para un 'ph', ¿cual es su espacio de fases?")

 miLabelD.grid(row=4,column=0,sticky="e",padx=15,pady=15)

 miEntryEspaFase=Entry(miframe)

 miEntryEspaFase.grid(row=4,column=1)

 def funcionBotonMS():

 #Pongo los Entryes en la lista datosIniciales

 messagebox.showinfo("Estado de:", miEntryPh.get() +">>Actividades de:>>"\

 +miEntryHijo.get()+">> Palp del año:>>"+miEntryPalp.get())

 datosSalida.append(miEntryPh.get())

 datosSalida.append(miEntryHijo.get())

 datosSalida.append(miEntryPalp.get())

 datosSalida.append(miEntryEspaFase.get())

 def funcionBotonSS():

 raiz.destroy()

 botonMostrar=Button(raiz,text="Introducir Datos",command=funcionBotonMS)

 botonMostrar.pack()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

75

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

 return datosSalida

def representarPobl(representar,poblB):

 #Datos

 poblacionBegin = poblB

 datosDic=representar

 x,Y1,Y2,Y3,Y4=[],[],[],[],[]

 for i in datosDic:

 #x and y must have same first dimension,

 x.append(i) #en i estan las keys, que son enteros

 Y1.append(datosDic[i][0])

 Y2.append(datosDic[i][1])

 Y3.append(datosDic[i][2])

 Y4.append(datosDic[i][3])

 eje_x=list(x)

 Y1=list(Y1)

 Y2=list(Y2)

 Y3=list(Y3)

 Y4=list(Y4)

 #crea un objeto fig de la clase Figure y de él se crean 4 instancias diferentes

 fig=plt.figure()

 #primer dibujo-ax1-, de 2 fila(2) y dos columnas(2), colocado el primero(1)

 ax1=fig.add_subplot(2,2,1)

 ax1.plot(eje_x,Y1)

 plt.ylabel('Población')

 #segundo dibujo-ax2-, de dos fila(2) y dos columnas(2), colocado el segundo(2)

76

 ax2=fig.add_subplot(2,2,2)

 ax2.plot(eje_x,Y2)

 plt.ylabel('Nacidos')

 # tercer dibujo-ax2-, de dos fila(2) y dos columnas(2), colocado el tercero(3)

 ax3=fig.add_subplot(2,2,3)

 ax3.plot(eje_x,Y3)

 plt.ylabel('Fallecidos')

 #4º dibujo

 ax4=fig.add_subplot(2,2,4)

 ax4.plot(eje_x,Y4)

 plt.ylabel('Fallecidos x desastres')

 #mostrar

 plt.show

 #imprime fichero

 poblacion,nacidos,muertos,muertosAP=0,0,0,0

 #tomo datos de la aplicación ph()

 fichero=open('Variaciones_poblacion.txt','w')

 fichero.write('Procedimiento monitorizar')

 fichero.write('\n'+'Información guardada en file: Variaciones_poblacion.txt')

fichero.write('\n'+format('Año',"^5")+format('Población',"^10")+format('Nacidos',"^15")+for
mat('Muertos',"^15")\

 +format('Muertos AP',"^8"))

 #convertir formato

 for ele in x : #x comienza en 1

 if ele == 1:

tira=('\n'+format(0,"<5")+"*"+format(poblacionBegin,"<10")+"*"+format(0,"<15")+"*"+forma
t(0,"<15")+"*"\

 +format(0,"<7"))

 fichero.write(tira)

 tiem=ele

77

 poblacion=Y1[ele-1]

 nacidos=Y2[ele-1]

 muertos=Y3[ele-1]

 muertosAP=Y4[ele-1]

tira=('\n'+format(tiem,"<5")+"*"+format(poblacion,"<10")+"*"+format(nacidos,"<15")+"*"+f
ormat(muertos,"<15")+"*"\

 +format(muertosAP,"<7"))

 fichero.write(tira)

 fichero.close

 os.startfile("Variaciones_poblacion.txt","print")

 return

def representarIDH(representar):

 #Datos

 datosDic=representar

 x,Y1=[],[]

 for i in datosDic:

 #x and y must have same first dimension,

 x.append(i) #en i estan las keys, que son enteros

 Y1.append(datosDic[i])

 eje_x3=list(x)

 Y1=list(Y1)

 #crea un objeto fig de la clase Figure

 fig=plt.figure()

 #primer dibujo-ax1-, de 2 fila(2) y dos columnas(2), colocado el primero(1)

 ax1=fig.add_subplot(1,1,1)

 ax1.plot(eje_x3,Y1)

78

 plt.ylabel('IDH')

 plt.show

def presentaDatosSalidaDiccionario(frase):

 objeto=frase

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Diccionario de Activiodades del ph() solicitado")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

79

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaDatosSalida(objetoPh,frase1,frase2):

 #utilizando Tkinter, tomo dos datos (año de inicio y población inicial)

 #Se los paso a los siguientes procedimientos

 #podrian ampliarse los campos que se piden, habría más parametros de DISEÑO

 getdatos=objetoPh #getDatos() del objeto dniPh1

 objeto1=frase1 #diccionario de actividades del objeto dniPh2

 objeto2=frase2 #tupla con los palp resultado de un select

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -10')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Actividades del ph solicitado")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

80

 miEntryText.insert(INSERT,objeto1)

 miEntryText.insert(INSERT,'++++++++++++++PALP del año
solicitado++++++++++++++++++++++++++++++')

 miEntryText.insert(INSERT,objeto2)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonMS():

 #Pongo los Entryes en la lista datosIniciales

 messagebox.showinfo("Estado del Ph solicitado:", getdatos)

 def funcionBotonSS():

 raiz.destroy()

 botonMostrar=Button(raiz,text="Estado del Ph solicitado:",command=funcionBotonMS)

 botonMostrar.pack()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaDatosSalidaHijos(frase):

 objeto=frase

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

81

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Parejas con descendientes. Puede hacer scroll")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaDatosSalidaVHijos(frase):

 objeto=frase

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

82

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Varones con descendientes. Puede hacer scroll")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaDatosSalidaMHijos(frase):

 objeto=frase

 raiz=tk.Tk() #creo una variable

83

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Mujeres con descendientes. Puede hacer scroll")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaDatosSalidaSDificil(frase):

84

 objeto=frase

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="ph con trabajo S-dificil")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

85

def presentaDatosSalidaFallecidos(frase):

 objeto=frase

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Relación de ph Fallecidos")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miEntryText=Text(miframe,width=60,height=20)

 miEntryText.grid(row=2,column=0)

 miEntryText.insert(INSERT,objeto)

 miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)

 miScrollVertical.grid(row=2,column=3,sticky="nsew")

 miEntryText.config(yscrollcommand=miScrollVertical.set)

 def funcionBotonSS():

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

86

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def presentaPantallaMuda():

 raiz=tk.Tk() #creo una variable

 raiz.geometry("800x500") #ancho y alto

 raiz.config(bg='yellow')

 raiz.title('Simulación Sociedad. Versión -1')

 #Frame

 miframe=Frame() #hecho el Frame, es trasparente

 miframe.pack() #empaquetar

 miframe.config(bg="red")

 miframe.propagate(0)

 miframe.config(width="800",height="400")

 miLabelA=Label(miframe, text="Relación no exhaustiva de gráficos e informaciones
siguientes")

 miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

 miLabelA=Label(miframe, text="1-Población, nacimientos, fallecimientos,Pib")

 miLabelA.grid(row=2,column=0,sticky="w",padx=15,pady=15)

 miLabelA=Label(miframe, text="2-Índice de Gini")

 miLabelA.grid(row=3,column=0,sticky="w",padx=15,pady=15)

 miLabelA=Label(miframe, text="3-Índice IDH")

 miLabelA.grid(row=4,column=0,sticky="w",padx=15,pady=15)

 miLabelA=Label(miframe, text="4-Ajustes de distribuciones de probailidad de ingresos
anuales")

 miLabelA.grid(row=5,column=0,sticky="w",padx=15,pady=15)

 def funcionBotonSS():

87

 raiz.destroy()

 botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

 botonSalir.pack()

 raiz.mainloop() #está en un bucle ejecutandose

 #debe ser la ultima instrucción

def graficoBarras(frase):

 #En frase se le debe pasar un diccionario

 valor=frase

 class App(tk.Tk):

 def __init__(self, valor):

 super().__init__()

 self.title('Demo de Tkinter & Matplotlib ')

 # prepare data

 abscisas = valor.keys()

 ordenadas = valor.values()

 # create a figure

 figure = Figure(figsize=(12, 6), dpi=100)

 # create FigureCanvasTkAgg object

 figure_canvas = FigureCanvasTkAgg(figure, self)

 # create axes

 axes = figure.add_subplot()

 # create the barchart

 axes.bar(abscisas,ordenadas)

 axes.set_title('Paso de valor: un diccionario')

 axes.set_ylabel('Ordenadas: valor población')

 axes.set_xlabel('Abscisas: tiempo')

88

 figure_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)

 app = App(valor)

 app.mainloop()

def graficoBarrasPIB(frase):

 #En frase se le debe pasar un diccionario

 valor=frase

 class App(tk.Tk):

 def __init__(self, valor):

 super().__init__()

 self.title('Demo de Tkinter & Matplotlib ')

 # prepare data

 abscisas = valor.keys()

 ordenadas = valor.values()

 # create a figure

 figure = Figure(figsize=(12, 6), dpi=100)

 # create FigureCanvasTkAgg object

 figure_canvas = FigureCanvasTkAgg(figure, self)

 # create axes

 axes = figure.add_subplot()

 # create the barchart

 axes.bar(abscisas,ordenadas)

 axes.set_title('Paso de valor: un diccionario')

 axes.set_ylabel('Ordenadas: PIB anual')

 axes.set_xlabel('Abscisas: tiempo')

 figure_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)

89

 app = App(valor)

 app.mainloop()

90

-*- coding: utf-8 -*-

"""

Created on Tue Jun 25 18:11:45 2024

ph_herramientas.py contiene aquellas funciones que son llamadas desde varios modulos

@author: invat

"""

import mysql.connector

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

def selectBDNoWhere(sql1):

 #hace unselect generico de una tabla

 miCursor=miConexion.cursor()

 sql= sql1

 miCursor.execute(sql)

 registro=miCursor.fetchall()

 miConexion.commit()

 miCursor.close()

 return registro

def selectBD(sql1,valor1):

 #hace un select de una tabla e incluye la clausula WHERE

 miCursor=miConexion.cursor()

 sql= sql1

 valor=valor1

 miCursor.execute(sql,valor)

 registro=miCursor.fetchall()

 miConexion.commit()

 miCursor.close()

 return registro

91

def insertBD(sql1,valor1):

 #insertBD.llamadas += 1

 #Crea, inserta VARIOS -many- registros en tabla

 #tambien proporciona la ultima clave AUTOMATICA añadida (tema Hijos, descendencia)

 miCursor=miConexion.cursor()

 sql= sql1

 valor=valor1

 miCursor.executemany(sql,valor)

 miCursor.execute(" select last_insert_id()")

 idDesc=miCursor.fetchall()

 idDescendiente=idDesc[0][0]

 miConexion.commit()

 miCursor.close()

 return idDescendiente

def insertUno(sql1,valor1):

 #insertBD.llamadas += 1

 #inserta UN registro

 miCursor=miConexion.cursor()

 sql= sql1

 valor=valor1

 miCursor.execute(sql,valor)

 miConexion.commit()

 miCursor.close()

 return

def updateBD(sql2,valor2):

 #el update NO precisa un Select previo

 miCursor=miConexion.cursor()

92

 sqlUpdate=sql2

 valorUpdate=valor2

 miCursor.executemany(sqlUpdate,valorUpdate)

 miConexion.commit()

 miCursor.close()

 return

def updateUno(sql2,valor2):

 #el update NO precisa un Select previo

 miCursor=miConexion.cursor()

 sqlUpdate=sql2

 valorUpdate=valor2

 miCursor.execute(sqlUpdate,valorUpdate)

 miConexion.commit()

 miCursor.close()

 return

def recuperarTablaActividades():

 #se cargan los 32 primeros registros de la tabla actividades

 sqlselect= "Select * from tercerbd.actividades "

 regActi = selectBDNoWhere(sqlselect)

 regis = [list(a) for a in regActi]

 return regis

def recuperarRegistroSociedad(iteracion):

 #recupera los valores de Sociedad correspondientes al AÑO ACTUAL GLOBAL

 #considerar que la edad de cada ph NO es el AÑO ACTUAL GLOBAL

 sqlselect= "Select * from sociedad where tiempo=%s"

 valorselect= (iteracion,) #para ser tupla un valor

 registro=selectBD(sqlselect,valorselect)

93

 regis=registro[0]

 return regis

94

-*- coding: utf-8 -*-

"""

Created on Sun Aug 11 08:21:20 2024

ph_salidas

@author: invat

"""

from collections import Counter

from io import open

import matplotlib.pyplot as plt

import mysql.connector

import numpy as np

import os

import pandas as pd

import ph_herramientas

import ph_pantallasES

from scipy.stats import shapiro

from scipy.stats import gamma

from scipy.stats import erlang

import scipy.special as sps

import warnings

import random

from math import log

warnings.filterwarnings('ignore')

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

95

def extraeDatosTotales():

 #No incluye RBU y excluye a menores de 18

 fraseIA = []

 sql2='SELECT ingrTotal FROM tercerbd.iteracionecon where (tiempo > 0 and edad >= 18
) '

 fraseIA = ph_herramientas.selectBDNoWhere(sql2)

 listTotal = [a[0] for a in fraseIA]

 #print('listTotal',listTotal)

 return listTotal

def recuperarRegistroSociedadPIB():

 #recupera los valores del campo pib de Sociedad de tods los años

 dic = {}

 sqlselect= "Select tiempo, pib from sociedad"

 registro=ph_herramientas.selectBDNoWhere(sqlselect)

 for a in registro:

 dic[a[0]] = int(a[1])

 return dic

def phTrabajoSDificil(nombrePh):

 #explora los ph() vivos (los muertos han sido borrados!) que tienen trabajo= S-dificil

 #No asigna, es para representar

 listaSDificil=[]

 for dni in nombrePh:

 objeGene=nombrePh.get(dni)

 #if (objeGene is not None):

 if objeGene.situlaboposi == 7:

 listaSDificil.append(dni)

 return listaSDificil

def dibuEspaFase(etiquetas, valores):

96

 #ChatGPT

 # Creamos el gráfico

 plt.figure(figsize=(8, 5))

 plt.plot(etiquetas, valores, marker='o')

 # Añadimos títulos y etiquetas

 plt.title('Espacio de Fases de un ph(dni)')

 plt.xlabel('Intencionalidad')

 plt.ylabel('Palp')

 plt.grid()

 # Mostramos el gráfico

 plt.show()

 return

def histoVa3Va9():

 #dibuja histogramas de Va3 y Va9

 def extraeVa3Va9():

 #sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

 sql2='SELECT sumava3, sumava9 FROM tercerbd.iteracionecon where tiempo > 0 '

 fraseVa3Va9=ph_herramientas.selectBDNoWhere(sql2)

 return fraseVa3Va9

 sumaVa3 = []

 sumaVa9 = []

 reg = extraeVa3Va9()

 for item in reg:

 sumaVa3.append(item[0])

 sumaVa9.append(item[1])

 plt.hist(sumaVa3, 50, density=True)

 plt.title("Histograma Va3")

97

 plt.show()

 plt.hist(sumaVa9, 50, density=True, color = 'r')

 plt.title("Histograma Va9")

 plt.show()

 return

def esGaussiana():

 def extraeDatosG():

 #sale uns lista con TODOS los datos ingrxTrab; no se distingue por iteración

 fraseIA = []

 lista = []

 sql2='SELECT ingrxTrab FROM tercerbd.iteracionecon where (tiempo > 0 and (18 <=
edad <65) and ingrxTrab > 0) order by ingrxTrab '

 fraseIA=ph_herramientas.selectBDNoWhere(sql2)

 #frase IA es una lista de tuplas: iteracion,ingresos anual (ojo por trabajo) de esa
persona

 for i in fraseIA:

 lista.append(i[0])

 return lista

 def extraeDatosAnual():

 #frase IA es una lista de tuplas: iteracion,ingresos anual (ojo por trabajo: ingrxTrab) de
esa persona

 #forma un diccionario de listas. A cada lista se le aplica el test de Shapiro

 fraseIA = []

 lista = []

 lKey = []

 lValue = []

 dic = {}

98

 #sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

 sql2='SELECT tiempo, ingrxtrab FROM tercerbd.iteracionecon where tiempo > 0 and
ingrxTrab > 0 order by tiempo, ingrxTrab '

 fraseIA=ph_herramientas.selectBDNoWhere(sql2)

 for a in fraseIA:

 lKey.append(a[0])

 lValue.append(a[1])

 #tenemos la lista de tuplas como dos listas

 iterA = iter(lKey)

 siguienteA = next(iterA)

 iterDato = iter(lValue)

 siguienteDato = next(iterDato)

 lista = []

 for item in lKey:

 try:

 siguienteA = next(iterA)

 lista.append(siguienteDato)

 if item != siguienteA:

 dic[item] = lista

 lista = []

 else:

 pass

 siguienteDato = next(iterDato)

 except StopIteration:

 lista.append(siguienteDato)

 dic[item] = lista

 return dic

99

 def ingresosEsGaussiana(valores):

 #Diccionario a lista

 ssN=0

 nnN=0

 valores = valores

 # Shapiro-Wilk

 stat, p = shapiro(valores)

 # Interpretación

 alpha = 0.05

 if p > alpha:

 ssN +=1

 else:

 nnN +=1

 return ssN,nnN

 def esGaussianaGT():

 #Gran Total: todos los ingrxTrab de todos los ph() en todas las iteraciones

 lista = []

 #datos x años

 valores = extraeDatosG()

 #veamos si ingresos sigue una distribución gaussiana

 r1 = sorted(valores)

 for a in r1:

 #ingresos.-Divido adaptar datos a escala

 lista.append(round(a/10_000,2))

 #test de normalidad de Sapiro

 ssN,nnN=ingresosEsGaussiana(lista)

print('===
======')

100

 print('La muestra parece Gaussiana o Normal, en el siguiente núm de ocasiones:
',ssN)

 print('La muestra NO parece Gaussiana o Normal: ', nnN,' veces')

 return lista

 def esGaussianaAnual(iteracion,valores):

 #Anual: todos los ingrxTrab de todos los ph() en cada iteracion

 lista = []

 #datos x años

 iteracion = iteracion

 valores = valores

 #veamos si ingresos sigue una distribución gaussiana

 r1 = sorted(valores)

 for a in r1:

 #ingresos.-Divido adaptar datos a escala

 lista.append(round(a/10_000,2))

 #test de normalidad de Sapiro

 ssN,nnN=ingresosEsGaussiana(lista)

 print('========================Iteración:
',iteracion,'==========================')

 print('La muestra parece Gaussiana o Normal, en el siguiente núm de ocasiones:
',ssN)

 print('La muestra NO parece Gaussiana o Normal: ', nnN,' veces')

 return lista

 #MAIN esGaussiana

 print('Se consideran todos los ingrxTrab de todos los ph() en todas las iteraciones: Gran
Total')

 lista = esGaussianaGT()

101

 plt.hist(lista, 50, density=True)

 plt.title("Histograma ingrxTrab: Gran Total")

 plt.show()

 print('Se genera un gráfico por cada iteración: todos los ingrxTrab de todos los ph()')

 dic = extraeDatosAnual()

 print(dic.keys())

 for item in dic:

 lista = esGaussianaAnual(item, dic[item])

 plt.hist(lista, 50, density=True)

 plt.title("Histograma ingrxTrab por iteracion: ")

 plt.show()

 return

def dibujoGammasObtenidas():

 #tomado de Gamma-vueltas.py

 print(' Va a dibujarse las distribuciones Gamma que corresponden a los valores')

 print (' de Alfa y Beta calculados y almacenados en la tabla Sociedad')

 print('En el punto anterior, el histograma se calcula por random coherente con Alfas y
Betas')

 print('Se toman los valores de x generados y se ajusta una Gamma, obteniendose Alfas y
Betas')

 print('El proceso parece coherente')

 print('No ocurre lo mismo cuando se obtienen los valores de x de los ingresos generados
por HOSS (V.-7)')

 def dibujoGammas4Casos():

 def extraeDatos():#ingresos anuales de cada ph()

 #sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

 sql2='SELECT tiempo, ingrxTrab FROM tercerbd.iteracionecon where (tiempo > 0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

102

 fraseIA=ph_herramientas.selectBDNoWhere(sql2)

 dic=listaTuplAListEspecial(fraseIA)

 return dic

 def listaTuplAListEspecial(lista0):

 #convierto la lista de tuplas en diccionario de listas de valores mayor que cero

 lV4 = []

 dic = {}

 clave = 1

 reg=lista0

 regis = [list(a) for a in reg]

 regis.append(['*','*'])

 for elemento in regis:

 if elemento[0] == clave:

 elemM0 = (float(elemento[1])/1_000)

 #print(elemM0)

 if elemM0 >0:

 lV4.append (elemM0)

 else:

 dic[clave] = lV4

 clave +=1

 lV4 = []

 return dic

 #MAIN

 print(' Va a dibujarse las distribuciones Gamma que corresponden a los valores')

 print (' de Alfa y Beta calculados con Datos Iniciales y almacenados en la tabla
Sociedad')

 alfas = []

103

 betas = []

 shape1 = []

 scale1 = []

 s = []

 anyo = 0

 #extrae alfas y betas de Datos Iniciales

 sql1='Select alfa, idh FROM sociedad'

 regis=ph_herramientas.selectBDNoWhere(sql1)

 for a in regis:

 alfas.append(a[0])

 betas.append(round(float(a[1]),2))

 alfas.remove(0)

 betas.remove(0)

 itera = iter(betas) # creamos el iterador

 for alfa in alfas:

 anyo +=1

 beta = next(itera)

 #para dibujar Gamma: random su histograma

 serie = np.random.gamma(alfa, beta,1000) #1000 valores random

 #dibujo

 count, bins, ignored = plt.hist(serie, 50, density=True) #histoigrama

 y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa)) #formulka
distribución Gamma Excel

 plt.title('1º-Histograma año: '+ str(anyo) + '.Ingresos random. Alfa/beta calculadas
Datos Iniciales')

 plt.plot(bins, y, linewidth=2, color='r') # distribución Gamma

 plt.show()

 #Siguiente Grafico; alfas, betas de Datos iniciales y serie datos de ingrxTrab en s
procedentes de dicc

104

 dicc = extraeDatos()

 for item in dicc:

 s.append(dicc[item]) #s: ingrxTrab

 #creamos el iterador y el siguiente elemento

 itera1 = iter(s)

 iteraBeta = iter(betas)

 anyo = 0

 for alfa in alfas:

 anyo +=1

 beta = next(iteraBeta)

 s = next(itera1) #Lista con los ingresos anuales de cada ph()

 #s debe see una lista

 #dibuja histograma de ingresos y gamma de la calculadas (no ajustadas) segun
datos iniciales

 count, bins, ignored = plt.hist(s, 50, density=True)

 y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa)) # la formula
de la distribución Gamma/Excel

 plt.title("2º-Histograma año: "+ str(anyo) + ".Ingresos reales. Alfa/beta calculadas
datos iniciales")

 plt.plot(bins, y, linewidth=2, color='r')

 plt.show()

 #Tomemos alfas y betas obtenidas a partir de (.fit) de los ingresos: ingrxTrab

 anyo = 0

 borraDicc = []

 serie1 = pd.Series(dicc)

 for item in serie1:

 anyo +=1

 #con la misma s generada: obtiene alfa y beta ajustadas (.fit)

 serie = pd.Series(item)

 print('pd.item >>>>>>>>>>>>>>>>',serie)

105

 media = serie.mean()

 minimo = serie.min()

 maximo = serie.max()

 std = serie.std()

 # Imprimir los estadísticos básicos

 print("Estadísticos básicos:")

 print("Media:", media)

 print("Mínimo:", minimo)

 print("Máximo:", maximo)

 print("Desviación estándar:", std)

 #params = gamma.fit(serie) ; params es tupla: [0] es shape y [2] es scale

 shape2, loc2, scale2 = gamma.fit(serie) # deberia alfa==shape2 y beta==scale2

 if shape2 > 1:

 shape1.append(round(shape2,2))

 scale1.append(round(scale2,2))

 else:

 #los valores de shape1 <= 0 dan un ajuste malo, creo

 borraDicc.append(anyo)

 print(f'Valores del AJUSTE Alfa {shape1} ---- Beta {scale1}')

 for item in borraDicc:

 print('Años eliminados: ', item)

 del dicc[item]

 iteraKey = iter(dicc)

 # se repite el proceso de dibujo con las nuevas Alfa y Beta

 itera = iter(scale1)

 for alfa in shape1:

 sig = next(itera)

106

 beta = sig

 s = np.random.gamma(alfa, beta,1000)

 diccKey = next(iteraKey)

 #valores de x: random adecuado a Alfa y Beta del AJUSTE

 #una lista de 1000 valores float

 count, bins, ignored = plt.hist(s, 50, density=True)

 y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa))

 plt.title("3º-Histograma ingresos random y alfa/beta del ajuste gamma.fit de
ingrxTrab. Año: " + str(diccKey))

 plt.plot(bins, y, linewidth=2, color='r')

 plt.show()

 #usando las alfa y betas procedentes de (.fit) se usan datos de sserie1 (ingrxTrab) en
vez de random

 serie2 = pd.Series(dicc)

 itera2 = iter(serie2)

 iteraBeta = iter(scale1)

 for alfa in shape1:

 beta = next(iteraBeta)

 try:

 s = next(itera2)

 except:

 StopIteration

 #s debe see una lista

 #dibuja histograma de ingresos y gamma de la calculadas (no ajustadas) segun
datos iniciales

 count, bins, ignored = plt.hist(s, 50, density=True)

 y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa)) # la formula
de la distribución Gamma/Excel

 plt.title("4º-Histograma ingresos reales y alfa/beta del ajuste gamma.fit de
ingrxTrab")

 plt.plot(bins, y, linewidth=2, color='r')

 plt.show()

107

 #time.sleep(1) #pausa de un segundo

 #Erlang; todos los ingrxTrab independientemente del año

 ingresos = s

 #histograma

 #Crear el histograma:

 plt.hist(ingresos, bins=15, density=True, alpha=0.6, color='g', label='Histograma de
Ingresos')

 # Estimar los parámetros de la distribución de Erlang

 k, loc, scale = erlang.fit(ingresos, floc=0) # Ajustamos loc a 0

 # Crear un rango de valores para el gráfico

 x = np.linspace(min(ingresos), max(ingresos), 100)

 pdf = erlang.pdf(x, k, loc=loc, scale=scale)

 # Graficar la distribución de Erlang ajustada

 plt.plot(x, pdf, 'r-', lw=2, label='Ajuste Erlang')

 #Personalizar y mostrar el gráfico:

 plt.title('Histograma de Ingresos y Ajuste de Erlang')

 plt.xlabel('Ingresos')

 plt.ylabel('Densidad')

 plt.legend()

 plt.grid()

 plt.show()

 return

 dibujoGammas4Casos()

108

 return

def imprimirSociedad():

 #Imprime parte de tabla Sociedad

 pib,ingresos,idh,gini,alfa=0.0,0.0,0.0,0.0,0.0

 #tomo datos de la aplicación ph()

 sql1='Select tiempo,poblacion,pib,ingrTotal,idh,gini,alfa FROM sociedad'

 regis=ph_herramientas.selectBDNoWhere(sql1)

 r1=[]

 fichero=open('pibIngIDHGini.txt','w')

 fichero.write('Procedimiento imprimirSociedad')

 fichero.write('\n'+'Información guardada en file: pibIngIDHGini.txt')

fichero.write('\n'+format('Año',"^5")+format('Población',"^10")+format('PIB',"^15")+format('I
ngresos',"^15")\

 +format('Gini(G)',"^8")+format('Alfa(G*20) ',"^10")+format('IDH',"^8")+format('Beta
',"^8"))

 #convertir formato

 for a in regis:

 r1.append(a[0])

 r1.append(a[1])

 r1.append(a[2])

 r1.append(a[3])

 r1.append(a[4])

 r1.append(a[5])

 r1.append(a[6])

 tiem=a[0]

 poblacion= a[1]

 if int(poblacion) < 20:

 break

 pib=a[2]

109

 ingresos=a[3]

 idh=a[4]

 beta=idh #IDH está cerca de 1; igualdad implicaria trabajar con Gamma
estandarizada

 gini=a[5]

 alfa=a[6]

tira='\n'+format(tiem,"<5")+"*"+format(poblacion,"<10")+"*"+format(pib,"<15")+"*"+format
(ingresos,"<15")+"*"\

 +format(gini,"<7")+"*"+format(alfa,"<7")+"*"+format(idh,"<7")+"*"+format(beta,"<7")

 fichero.write(tira)

 fichero.close

 os.startfile("pibIngIDHGini.txt","print")

 return regis

def listaTuplasAListasSE(lista0):

 #convierto la lista de tuplas en lista de listas

 reg=lista0

 regis = [list(a) for a in reg]

 return regis

def codificar(lista0):

 #cada elemento de lista2 es un str

 lista1=lista0

 lista2=[]

 lista2 = [str(item) for item in lista1]

 return lista2

def parejaHijos():

 #recorrer la tabla nacer y ver cuantos hijos tiene cada pareja que tiene al menos, un hijo

 reg=[]

 sql1='Select idPadre,idMadre from nacer where idPadre != -1 and idMadre != -1'

110

 reg=ph_herramientas.selectBDNoWhere(sql1)

 listaListas=listaTuplasAListasSE(reg)

 lista=codificar(listaListas)

 ocurrencia=Counter(lista)

 #Ocurrencia: es diccionario la lista [padre,madre] es clave y el valor es num hijos

 return ocurrencia

def varonesHijos():

 #recorrer la tabla nacer y ver cuantos hijos tiene cada varón

 reg=[]

 ocurrencia={}

 sql1='Select idPadre from nacer where idPadre!= -1 and idMadre!= -1'

 reg=ph_herramientas.selectBDNoWhere(sql1)

 #convierto la lista de tuplas en lista de listas

 listaListas=listaTuplasAListasSE(reg)

 lista=codificar(listaListas)

 ocurrencia=Counter(lista)

 return ocurrencia

def mujeresHijos():

 #recorrer la tabla nacer y ver cuantos hijos tiene cada mujer

 reg=[]

 ocurrencia={}

 sql1='Select idMadre from nacer where idPadre!= -1 and idMadre!= -1'

 reg=ph_herramientas.selectBDNoWhere(sql1)

 #convierto la lista de tuplas en lista de listas

 listaListas=listaTuplasAListasSE(reg)

 lista=codificar(listaListas)

 ocurrencia=Counter(lista)

 return ocurrencia

111

def imprimirPH(ph):

 #los datos de un ph() tomados de MySQL

 #tabla nacer

 fichero=open('imprimirPH.txt','w')

 fichero.write('Procedimiento imprimirPH.py')

 fichero.write('\n'+'Información guardada en file: imprimirPH.txt' + '\n')

 tira = '\n'+'>>>>>>>>>>>>>>>>>>>>>>>>>>>Tabla
nacer>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'+ '\n'

fichero.write('\n'+'*DNI*Edad*IniAbs*Sexo*Falle*Intenc*IdFam*IdP*IdE*RieT*IdP*IdM*RT
ole**CoI**Resili*Poten*AtraPers*'+'\n')

 tira=''

 sql1='Select * FROM nacer where id=%s'

 valor1=(ph,)

 registro=ph_herramientas.selectBD(sql1,valor1)

 regis = registro[0]

 for item in regis:

 tira = tira +str(item) +'*'

 fichero.write(tira)

 tira = ''

 #Linea de separación

 tira =
'\n'+'>>>>>>>>>>>>>>>>>>>>>>>>>>>Iteración>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'
+ '\n'

 fichero.write(tira)

 #tabla iteracion

 tira=''

112

 fichero.write('\n'+'*DNI*Tiempo*Actividad**Edad va0*
va1*va2*va3*va4*va5*va6*va7*va8*va9*'+'\n')

 sql1='Select * FROM iteracion where dni=%s and edad > 18 order by tiempo,actividad'

 valor1=(ph,)

 regis=ph_herramientas.selectBD(sql1,valor1)

 for item in regis:

 tira = str(item)

 tira='\n'+tira

 fichero.write(tira)

 tira=''

 #Linea de separación

 tira =
'\n'+'>>>>>>>>>>>>>>>>>>>>>>Familia>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'+
'\n'

 fichero.write(tira)

 #tabla organiza_miembros - Familia

 tira=''

 sql1="SELECT * FROM tercerbd.organiza_miembrosfami where id_nacer = %s;"

 valor1=(ph,)

 regis=ph_herramientas.selectBD(sql1,valor1)

 for item in regis:

 tira = str(item)

 tira='\n'+tira

 fichero.write(tira)

 tira=''

 #Linea de separación

 tira =
'\n'+'>>>>>>>>>>>>>>>>>>>>>>>Empresa>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'
+ '\n'

 fichero.write(tira)

113

 #tabla organiza_miembros - Organizaciones (sea software, industria...)

 tira = ''

 sql2="SELECT * FROM tercerbd.organiza_miembros where id_nacer=%s ;"

 valor2=(ph,)

 regis=ph_herramientas.selectBD(sql2,valor2)

 for i in regis:

 tira = str(i)

 tira = '\n' + tira

 fichero.write(tira)

 tira=''

 fichero.close

 #La siguiente linea imprime por impresora: ojo que son varias A4!!

 os.startfile("imprimirPH.txt","print")

 return

def monitorizar(poblCont,poblacionBegin):

 def moniCI():

 #APLICACION al 'Histograma Coeficiente Intelectual población'

 pobl=[]

 sql1='SELECT coefiInte FROM tercerbd.nacer;'

 pobl = ph_herramientas.selectBDNoWhere(sql1)

 numeros = sorted([float(a[0]) for a in pobl])

 # creamos un histograma y pintamos

 plt.hist(numeros, bins=10, density=True)

 plt.xlabel("Valores CI")

 plt.ylabel("Frecuencia")

 plt.title("Histograma Coeficiente Intelectual población")

 plt.show()

114

 return

 def moniResi():

 #APLICACION al 'Histograma Resiliencia población'

 pobl=[]

 sql1='SELECT resiliencia FROM tercerbd.nacer;'

 pobl = ph_herramientas.selectBDNoWhere(sql1)

 numeros = sorted([float(a[0]) for a in pobl])

 # creamos un histograma y pintamos

 plt.hist(numeros, bins=10, density=True)

 plt.xlabel("Valores resiliencia")

 plt.ylabel("Frecuencia")

 plt.title("Histograma Resiliencia población")

 plt.show()

 return

 def moniPoten():

 #Aplicacion a bins literales

 'Histograma Potencial población'

 #grupos=sorted(['0-Bajo','1-Medio','2-Altos','3-Malto'])

 #print(grupos)

 sql1='SELECT potencial FROM tercerbd.nacer;'

 pobl = ph_herramientas.selectBDNoWhere(sql1)

 numeros = ([(a[0]) for a in pobl])

 plt.hist(numeros, bins=4, density=True)

 # Configurar el histograma

 plt.xlabel('Potencial: Grupos')

 plt.ylabel('Valores')

 plt.title('Histograma Potencial población')

 # Mostrar histograma

 plt.show()

 return

115

 def moniPobl():

 ph_pantallasES.representarPobl(poblCont,poblacionBegin)

 print(poblCont)

 return

 moniCI()

 moniResi()

 moniPoten()

 moniPobl()

 return

def volcadoPh(nombrePh):

 #comprueba escritura en todos los vivos ph() de POO de seis datos economicos

 for i in nombrePh:

 objeGene = nombrePh.get(i)

 print(objeGene.palp) #en realidad los ahorros

 print(objeGene.gastoAnyo)

 print(objeGene.ingrxTrabB)

 print(objeGene.plusProductividad)

 print(objeGene.ingrxTrab)

 print(objeGene.ingrxRBU)

 print('>>>')

 return

Función Llamada desde ph_principal

def tratamientoDatos(nombrePh, datosReprPoblPib,poblCont,poblacionBegin):

 #Utilizado Ingresos Anuales para ver si es Gaussiana y para graficos Gamma

 #extraeDatos,
listaTuplAListEspecial,ingresosAnualesEsGaussiana,ingAnualHistoGamma,

 # y para acabar: MAIN de Ingresos Anuales, en Tratamiento de datos

 #Por cada iteracion un grafico de Ingresos Anuales (IA)

116

 nombrePh= nombrePh

 datosReprPoblPib = datosReprPoblPib

 poblCont = poblCont

 def extraeDatos():

 fraseIA = []

 #sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

 sql2='SELECT tiempo, ingrxTrab FROM tercerbd.iteracionecon where (tiempo > 0 and
(18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

 fraseIA=ph_herramientas.selectBDNoWhere(sql2)

 dic=listaTuplAListEspecial(fraseIA)

 return dic

 def listaTuplAListEspecial(lista0):

 #convierto la lista de tuplas en diccionario de listas de valores mayor que cero

 lV4 = []

 dic = {}

 clave = 1

 reg=lista0

 regis = [list(a) for a in reg]

 regis.append(['*','*'])

 for elemento in regis:

 if elemento[0] == clave:

 elemM0 = float(elemento[1])/10_000

 if elemM0 >0:

 lV4.append (elemM0)

 else:

 dic[clave] = lV4

 clave +=1

 lV4 = []

 return dic

117

 def diccionarioUltimo(dniPh2):

 sql = 'SELECT max(tiempo) FROM tercerbd.iteracionecon where dni = %s;'

 valor = (dniPh2,)

 frase=ph_herramientas.selectBD(sql,valor)

 frase = frase[0][0]

 sql1='Select * from iteracionecon where dni=%s and tiempo=%s'

 valor1=(dniPh2,frase)

 frase1=ph_herramientas.selectBD(sql1,valor1)

 return frase1

 def diccEspaFase(dniPh3):

 sql1='Select intenciona,palp from iteracionecon where dni=%s order by tiempo'

 valor1=(dniPh3,)

 frase3=ph_herramientas.selectBD(sql1,valor1)

 return frase3

 def palpVivosAnyo(anyo):

 sql2="Select sum(palp) from iteracionecon where tiempo = %s "

 valor2=(tiempoSolicitado,) #ha de ser una tupla

 frase2=ph_herramientas.selectBD(sql2,valor2)

 frase2 = (frase2[0][0])

 return frase2

 def ingresosAnualesEsGaussiana(valores):

 #Diccionario a lista

 ssN=0

 nnN=0

 valores = valores

118

 # Shapiro-Wilk

 stat, p = shapiro(valores)

 # Interpretación

 alpha = 0.05

 if p > alpha:

 #print ('La muestra parece Gaussiana o Normal (no se rechaza la hipótesis nula H0)')

 ssN +=1

 else:

 #print ('La muestra NO parece Gaussiana o Normal(se rechaza la hipótesis nula H0')

 nnN +=1

 return ssN,nnN

 def HAlfaBetaFichero():

 #Por cada iteracion un grafico de Ingresos Anuales (IA)

 dic = {}

 i = 1

 #datos ingrxTrab x años

 dic = extraeDatos() #extrae ingrxTrab por cada iteracion

 #claveMax = valorMax[0][0]

 # Creamos un archivo PDF con PdfPages

 #os.chdir('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python ph-7')

 regSociedad = imprimirSociedad()

 print('regSociedad--',regSociedad)

 garbage = open('garbage.txt','w')

 fichero = open ('HIngrAnyo.txt','w')

 fichero.write('\n'+'Información guardada en file: HIngrAnyo.txt')

 fichero.write('\n'+'Iteración--Alfa,beta de Ajuste(fit)--Alfa,beta usando Datos Iniciales')

 for i in dic:

119

 tira = ''

 lista = []

 shape = 0.00

 scale = 0.00

 listaValues = (dic[i])

 listaValues = sorted(listaValues)

 r1 = listaValues

 for a in r1:

 #ingresos.-Divido adaptar datos a escala

 if a > 0:

 #lista.append(round(float(a)/10_000,2))

 listaBis = round(log(a),2)

 lista.append(listaBis)

 # Convertir el diccionario en una serie de pandas

 try:

 serie = pd.Series(lista,dtype=float)

 except ValueError:

 continue

 #ChatGPT

 # 2. Ajustar una distribución gamma a los datos

 try:

 shape, loc, scale = gamma.fit(serie) # floc=0---Forzar loc a 0 para un mejor ajuste

 except ValueError :

 continue

 #para el fichero de texto

 alfa = str(round(shape,2))

 beta = str(round(scale,2))

 if regSociedad[i][6] != None:

120

 alfa2 = str(round(regSociedad[i][6],2))

 beta2 = str(round(regSociedad[i][4],2))

 else:

 alfa2 = 'AAA'

 beta2 = 'BBB'

 alfa22 = str(round((regSociedad[i][6]/20),2))

 tira='\n'+format(str(i),"<5")+" ** "+format(alfa,"<5")+" ** "+format(beta,"<5")+"
********* "+format(alfa2,"<5")+"("\

 +format(alfa22,"<5") +") **"+format(beta2,"<5")

 print('TIRA--------',tira)

 fichero.write (tira)

 i += 1

 fichero.close()

 os.startfile('HIngrAnyo.txt','print')

 #os.remove('HIngrAnyoAlfaBeta.txt')

 return

 #MAIN tratamientoDatos()

 #petición de datos para hacer algunas Salidas. Utilizo el mismo mecanismo en todas

121

 datosSalida=ph_pantallasES.capturaDatosSalida()

 #el INT asegura de pasar en el get un entero

 dniPh1=int(datosSalida[0]) #Elija un 'ph' válido para conocer su estado

 dniPh2=int(datosSalida[1]) #lija un 'ph' válido para conocer su último estado de
Actividades

 tiempoSolicitado=int(datosSalida[2]) #Para un año concreto, ¿cual es el palp de los
vivos?"

 dniPh3 = int(datosSalida[3])

 #Respuesta segunda pregunta

 objeto=nombrePh.get(dniPh1)

 if objeto != None:

 objetoPh=objeto.getDatos()

 imprimirPH(dniPh1)

 else:

 objetoPh='Ha fallecido'

 #obtenemos el ULTIMO diccionario del ph solicitado:dniPh2

 frase1 = diccionarioUltimo(dniPh2)

 ph_pantallasES.presentaDatosSalidaDiccionario(frase1)

 if objeto != None:

 print('Actividades de ph() '+str(dniPh2),objeto.miDicPh)

 #obtenemos el palp anual de los vivos

 frase2 = palpVivosAnyo(tiempoSolicitado)

 ph_pantallasES.presentaDatosSalida(objetoPh,frase1, frase2)

 #espacio de fases del dniPh3

 for i in range(1,11):

 azar = random.randint(1,dniPh3)

 etiquetas = []

 valores = []

 dniPh3 = dniPh3 if i == 1 else azar

122

 frase3 = diccEspaFase(dniPh3) #frase3 es un diccionario del tipo intenciona:palp

 for item in frase3:

 etiquetas.append ((item[0]))

 valores.append ((item[1]))

 dibuEspaFase(etiquetas,valores)

 #otras recuperaciones NO solicitadas.

 #forma de operar: def calcula la frase y pantalla la imprime

 #num hijos por la misma pareja

 frase=parejaHijos()

 ph_pantallasES.presentaDatosSalidaHijos(frase)

 #num hijos por varón

 frasev=varonesHijos()

 ph_pantallasES.presentaDatosSalidaVHijos(frasev)

 #num hijos por mujer

 frasem=mujeresHijos()

 ph_pantallasES.presentaDatosSalidaMHijos(frasem)

 #quienes han logrado trabajo S-dificil

 fraseSDificil=phTrabajoSDificil(nombrePh)

 ph_pantallasES.presentaDatosSalidaSDificil(fraseSDificil)

 #relacion de fallecidos

 sql1="SELECT id,edad FROM tercerbd.nacer where fallecido = 'S' order by id"

 record=ph_herramientas.selectBDNoWhere(sql1)

 ph_pantallasES.presentaDatosSalidaFallecidos(record)

 ph_pantallasES.presentaPantallaMuda()

 #otras informaciones NO solicitadas

 #preparo para hacer grafico barras poblacion solamente

 datos={}

 for a in datosReprPoblPib:

 datos[a]=datosReprPoblPib[a][0]

 ph_pantallasES.graficoBarras(datos)

123

 #preparo para hacer grafico barras PIB solamente

 diccionario = {}

 diccionario = recuperarRegistroSociedadPIB()

 print(diccionario)

 ph_pantallasES.graficoBarrasPIB(diccionario)

 #Monitorizar CI, Resiliencia...de la población

 monitorizar(poblCont,poblacionBegin)

 #representar IDH

 representar={}

 sql1='SELECT tiempo, idh FROM tercerbd.sociedad order by tiempo'

 fraseIDH=ph_herramientas.selectBDNoWhere(sql1)

 fraseIDH1=listaTuplasAListasSE(fraseIDH)

 for i in fraseIDH1:

 representar[i[0]]=i[1]

 ph_pantallasES.representarIDH(representar)

 #dibuja histogramas de Va3 y Va9

 histoVa3Va9()

 # mira si los ingresos anuales o totales es gaussiana

 esGaussiana()

 ##imprime de tabla sociedad, relación del alfas beta, x datos iniciales, y alfas,beta por
ajuste de ingresos

 dibujoGammasObtenidas()

 #'Iteración--Alfa,beta de Ajuste(fit)--Alfa,beta usando Datos Iniciales'

 HAlfaBetaFichero()

 #comprueba escritura en todos los VIVOS ph() de POO de seis datos economicos

 volcadoPh(nombrePh)

 return

124

-*- coding: utf-8 -*-

"""

Created on 24/6/24

ph-seleDist

Tomado del artículo 'Ajuste y selección de distribuciones con Python' de Joaquín Amat
Rodrigo

Realizo minimas y escasas adaptaciones para cargar y preparar mis datos

@author: invat

"""

import matplotlib.pyplot as plt

import mysql.connector

import numpy as np

from scipy import stats

import ph_herramientas

#from ph_herramientas import selectBDNoWhere

import pandas as pd

import inspect

import warnings

warnings.filterwarnings('ignore')

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

global resultados

def datosIngrGast():

 #sql1 = SELECT tiempo, sum(va4), sum(va5) FROM tercerbd.iteracionecon group by
tiempo

 #sql1='Select ingrxTrab,gastoanyo FROM tercerbd.iteracionecon where tiempo > 0'

125

 sql1 = 'SELECT ingrxTrab, gastoanyo FROM tercerbd.iteracionecon where (tiempo > 0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

 regis = ph_herramientas.selectBDNoWhere(sql1)

 del regis[0]

 r1 = []

 r2 = []

 for a in regis:

 #ingresos / gastos.-Divido adaptar datos a escala

 r1.append(round(float(a[0])/10_000,2))

 #gastos.- Divido

 r2.append(round(float(a[1])/10_000,2))

 return r1,r2

def seleccionar_distribuciones(familia='realplus', verbose=True):

 '''

 Esta función selecciona un subconjunto de las distribuciones disponibles

 en scipy.stats

 Parameters

 familia : {'realall', 'realline', 'realplus', 'real0to1', 'discreta'}

 realall: distribuciones de la familia `realline` + `realplus`

 realline: distribuciones continuas en el dominio (-inf, +inf)

 realplus: distribuciones continuas en el dominio [0, +inf)

 real0to1: distribuciones continuas en el dominio [0,1]

 discreta: distribuciones discretas

 verbose : bool

 Si se muestra información de las distribuciones seleccionadas

 (the default `True`).

126

 Returns

 distribuciones: list

 listado con las distribuciones (los objetos) seleccionados.

 Raises

 Exception

 Si `familia` es distinto de 'realall', 'realline', 'realplus', 'real0to1',

 o 'discreta'.

 Notes

 Las distribuciones levy_stable y vonmises han sido excluidas por el momento.

 '''

 distribuciones = [getattr(stats,d) for d in dir(stats) \

 if isinstance(getattr(stats,d), (stats.rv_continuous, stats.rv_discrete))]

 exclusiones = ['levy_stable', 'vonmises', 'studentized_range','chi2']

 distribuciones = [dist for dist in distribuciones if dist.name not in exclusiones]

 #Delimito desde cero

 dominios = {

 'realall' : [-np.inf, np.inf],

 'realline': [np.inf,np.inf],

 'realplus': [0, np.inf],

 'real0to1': [0, 1],

 'discreta': [None, None],

 }

127

 distribucion = []

 tipo = []

 dominio_inf = []

 dominio_sup = []

 for dist in distribuciones:

 distribucion.append(dist.name)

 tipo.append(np.where(isinstance(dist, stats.rv_continuous), 'continua', 'discreta'))

 dominio_inf.append(dist.a)

 dominio_sup.append(dist.b)

 info_distribuciones = pd.DataFrame({

 'distribucion': distribucion,

 'tipo': tipo,

 'dominio_inf': dominio_inf,

 'dominio_sup': dominio_sup

 })

 info_distribuciones = info_distribuciones \

 .sort_values(by=['dominio_inf', 'dominio_sup'])\

 .reset_index(drop=True)

 if familia in ['realall', 'realline', 'realplus', 'real0to1']:

 info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='continua']

 condicion = (info_distribuciones['dominio_inf'] == dominios[familia][0]) & \

 (info_distribuciones['dominio_sup'] == dominios[familia][1])

 info_distribuciones = info_distribuciones[condicion].reset_index(drop=True)

 if familia in ['discreta']:

 info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='discreta']

128

 seleccion = [dist for dist in distribuciones \

 if dist.name in info_distribuciones['distribucion'].values]

 if verbose:

 print("---")

 print(" Distribuciones seleccionadas ")

 print("---")

 with pd.option_context('display.max_rows', None, 'display.max_columns', None):

 print(info_distribuciones)

 return seleccion

def comparar_distribuciones(texto,x, familia='realplus', ordenar='aic', verbose=True):

 '''

 Esta función selecciona y ajusta un subconjunto de las distribuciones

 disponibles en scipy.stats. Para cada distribución calcula los valores de

 Log Likelihood, AIC y BIC.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 familia : {'realall', 'realline', 'realplus', 'real0to1', 'discreta'}

 realall: distribuciones de la familia `realline` + `realplus`

 realline: distribuciones continuas en el dominio (-inf, +inf)

 realplus: distribuciones continuas en el dominio [0, +inf)

 real0to1: distribuciones continuas en el dominio [0,1]

 discreta: distribuciones discretas

129

 ordenar : {'aic', 'bic'}

 criterio de ordenación de mejor a peor ajuste.

 verbose : bool

 Si se muestra información de las distribuciones seleccionadas

 (the default `True`).

 Returns

 resultados: data.frame

 distribucion: nombre de la distribución.

 log_likelihood: logaritmo del likelihood del ajuste.

 aic: métrica AIC.

 bic: métrica BIC.

 n_parametros: número de parámetros de la distribución de la distribución.

 parametros: parámetros del tras el ajuste

 Raises

 Exception

 Si `familia` es distinto de 'realall', 'realline', 'realplus', 'real0to1',

 o 'discreta'.

 Notes

 '''

 distribuciones = seleccionar_distribuciones(familia=familia, verbose=verbose)

 distribucion_ = []

130

 log_likelihood_= []

 aic_ = []

 bic_ = []

 n_parametros_ = []

 parametros_ = []

 for i, distribucion in enumerate(distribuciones):

 print(f"{i+1}/{len(distribuciones)} Ajustando distribución: {distribucion.name}")

 try:

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 distribucion_.append(distribucion.name)

 log_likelihood_.append(log_likelihood)

 aic_.append(aic)

 bic_.append(bic)

 n_parametros_.append(len(parametros))

 parametros_.append(parametros_dict)

 resultados = pd.DataFrame({

 'distribucion': distribucion_,

 'log_likelihood': log_likelihood_,

 'aic': aic_,

 'bic': bic_,

 'n_parametros': n_parametros_,

131

 'parametros': parametros_,

 })

 resultados = resultados.sort_values(by=ordenar).reset_index(drop=True)

 print ('resultados---',resultados)

 except Exception as e:

 print(f"Error al tratar de ajustar la distribución {distribucion.name}")

 print(e)

 print("")

 return resultados

def plot_distribucion(texto, x, nombre_distribucion, ax=None):

 '''

 Esta función superpone la curva de densidad de una distribución con el

 histograma de los datos.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 nombre_distribuciones : str

 nombre de una de las distribuciones disponibles en `scipy.stats`.

 Returns

 resultados: matplotlib.ax

 gráfico creado

132

 Raises

 Notes

 '''

 distribucion = getattr(stats, nombre_distribucion)

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 x_hat = np.linspace(min(x), max(x), num=1000)

 y_hat = distribucion.pdf(x_hat, *parametros)

 if ax is None:

 fig, ax = plt.subplots(figsize=(7,4))

 ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

 ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5);

 ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)

 ax.set_title('Ajuste distribución '+texto)

 ax.set_xlabel('x')

133

 ax.set_ylabel('Densidad de probabilidad')

 ax.legend();

 print('---------------------')

 print('Resultados del ajuste')

 print('---------------------')

 print(f"Distribución: {distribucion.name}")

 print(f"Dominio: {[distribucion.a, distribucion.b]}")

 print(f"Parámetros: {parametros_dict}")

 print(f"Log likelihood: {log_likelihood}")

 print(f"AIC: {aic}")

 print(f"BIC: {bic}")

 return ax

def plot_multiple_distribuciones(texto,x, nombre_distribuciones, ax=None):

 '''

 Esta función superpone las curvas de densidad de varias distribuciones

 con el histograma de los datos.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 nombre_distribuciones : list

 lista con nombres de distribuciones disponibles en `scipy.stats`.

 Returns

134

 resultados: matplotlib.ax

 gráfico creado

 Raises

 Notes

 '''

 if ax is None:

 fig, ax = plt.subplots(figsize=(7,4))

 ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5)

 ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)

 ax.set_title('Ajuste distribuciones al histograma de line 332'+texto+' anuales totales')

 ax.set_xlabel('x')

 ax.set_ylabel('Densidad de probabilidad')

 for nombre in nombre_distribuciones:

 distribucion = getattr(stats, nombre)

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

135

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 x_hat = np.linspace(min(x), max(x), num=1000)

 y_hat = distribucion.pdf(x_hat, *parametros)

 ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

 ax.legend();

 return ax

def ajuste(serie,texto):

 serie = serie

 texto = texto

 # Ajuste y comparación de distribuciones

 #
==
======

 resultados = comparar_distribuciones(texto,

 x=serie.to_numpy(),

 familia='realall',

 ordenar='aic',

 verbose=False

)

 resultados

 fig, ax = plt.subplots(figsize=(8,5))

 plot_distribucion(texto,

 x=serie.to_numpy(),

 nombre_distribucion=resultados['distribucion'][0],

136

 ax=ax

);

 fig, ax = plt.subplots(figsize=(8,5))

 plot_multiple_distribuciones(texto,

 x=serie.to_numpy(),

 nombre_distribuciones=resultados['distribucion'][:4],

 ax=ax

);

 return

#MAIN CÓDIGO

def main():

 ingr = []

 gast = []

 ingr,gast = datosIngrGast()

 for item in range(1,3):

 comodin = []

 texto = ''

 serie = []

 comodin = ingr if item ==1 else gast

 texto = 'Ingresos' if item ==1 else 'Gastos'

 #estadisticos básicos

 serie = pd.Series(comodin)

 ajuste(serie, texto)

 return

137

-*- coding: utf-8 -*-

"""

Created on 24/6/24

ph-seleDist

Tomado del artículo 'Ajuste y selección de distribuciones con Python' de Joaquín Amat
Rodrigo

Realizo minimas y escasas adaptaciones para cargar y preparar mis datos

@author: invat

"""

import matplotlib.pyplot as plt

import mysql.connector

import numpy as np

from scipy import stats

import ph_herramientas

#from ph_herramientas import selectBDNoWhere

import pandas as pd

import inspect

import warnings

warnings.filterwarnings('ignore')

miConexion=mysql.connector.connect(host="localhost",database="tercerbd", \

 user="invat",password="jquintas49",auth_plugin="mysql_native_password")

global resultados

def datosIngrGast():

 #sql1 = SELECT tiempo, sum(va4), sum(va5) FROM tercerbd.iteracionecon group by
tiempo

 #sql1='Select ingrxTrab,gastoanyo FROM tercerbd.iteracionecon where tiempo > 0'

138

 sql1 = 'SELECT ingrxTrab, gastoanyo FROM tercerbd.iteracionecon where (tiempo > 0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

 regis = ph_herramientas.selectBDNoWhere(sql1)

 del regis[0]

 r1 = []

 r2 = []

 for a in regis:

 #ingresos / gastos.-Divido adaptar datos a escala

 r1.append(round(float(a[0])/10_000,2))

 #gastos.- Divido

 r2.append(round(float(a[1])/10_000,2))

 return r1,r2

def seleccionar_distribuciones(familia='realplus', verbose=True):

 '''

 Esta función selecciona un subconjunto de las distribuciones disponibles

 en scipy.stats

 Parameters

 familia : {'realall', 'realline', 'realplus', 'real0to1', 'discreta'}

 realall: distribuciones de la familia `realline` + `realplus`

 realline: distribuciones continuas en el dominio (-inf, +inf)

 realplus: distribuciones continuas en el dominio [0, +inf)

 real0to1: distribuciones continuas en el dominio [0,1]

 discreta: distribuciones discretas

 verbose : bool

 Si se muestra información de las distribuciones seleccionadas

 (the default `True`).

139

 Returns

 distribuciones: list

 listado con las distribuciones (los objetos) seleccionados.

 Raises

 Exception

 Si `familia` es distinto de 'realall', 'realline', 'realplus', 'real0to1',

 o 'discreta'.

 Notes

 Las distribuciones levy_stable y vonmises han sido excluidas por el momento.

 '''

 distribuciones = [getattr(stats,d) for d in dir(stats) \

 if isinstance(getattr(stats,d), (stats.rv_continuous, stats.rv_discrete))]

 exclusiones = ['levy_stable', 'vonmises', 'studentized_range','chi2']

 distribuciones = [dist for dist in distribuciones if dist.name not in exclusiones]

 #Delimito desde cero

 dominios = {

 'realall' : [-np.inf, np.inf],

 'realline': [np.inf,np.inf],

 'realplus': [0, np.inf],

 'real0to1': [0, 1],

 'discreta': [None, None],

 }

140

 distribucion = []

 tipo = []

 dominio_inf = []

 dominio_sup = []

 for dist in distribuciones:

 distribucion.append(dist.name)

 tipo.append(np.where(isinstance(dist, stats.rv_continuous), 'continua', 'discreta'))

 dominio_inf.append(dist.a)

 dominio_sup.append(dist.b)

 info_distribuciones = pd.DataFrame({

 'distribucion': distribucion,

 'tipo': tipo,

 'dominio_inf': dominio_inf,

 'dominio_sup': dominio_sup

 })

 info_distribuciones = info_distribuciones \

 .sort_values(by=['dominio_inf', 'dominio_sup'])\

 .reset_index(drop=True)

 if familia in ['realall', 'realline', 'realplus', 'real0to1']:

 info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='continua']

 condicion = (info_distribuciones['dominio_inf'] == dominios[familia][0]) & \

 (info_distribuciones['dominio_sup'] == dominios[familia][1])

 info_distribuciones = info_distribuciones[condicion].reset_index(drop=True)

 if familia in ['discreta']:

 info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='discreta']

141

 seleccion = [dist for dist in distribuciones \

 if dist.name in info_distribuciones['distribucion'].values]

 if verbose:

 print("---")

 print(" Distribuciones seleccionadas ")

 print("---")

 with pd.option_context('display.max_rows', None, 'display.max_columns', None):

 print(info_distribuciones)

 return seleccion

def comparar_distribuciones(texto,x, familia='realplus', ordenar='aic', verbose=True):

 '''

 Esta función selecciona y ajusta un subconjunto de las distribuciones

 disponibles en scipy.stats. Para cada distribución calcula los valores de

 Log Likelihood, AIC y BIC.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 familia : {'realall', 'realline', 'realplus', 'real0to1', 'discreta'}

 realall: distribuciones de la familia `realline` + `realplus`

 realline: distribuciones continuas en el dominio (-inf, +inf)

 realplus: distribuciones continuas en el dominio [0, +inf)

 real0to1: distribuciones continuas en el dominio [0,1]

 discreta: distribuciones discretas

142

 ordenar : {'aic', 'bic'}

 criterio de ordenación de mejor a peor ajuste.

 verbose : bool

 Si se muestra información de las distribuciones seleccionadas

 (the default `True`).

 Returns

 resultados: data.frame

 distribucion: nombre de la distribución.

 log_likelihood: logaritmo del likelihood del ajuste.

 aic: métrica AIC.

 bic: métrica BIC.

 n_parametros: número de parámetros de la distribución de la distribución.

 parametros: parámetros del tras el ajuste

 Raises

 Exception

 Si `familia` es distinto de 'realall', 'realline', 'realplus', 'real0to1',

 o 'discreta'.

 Notes

 '''

 distribuciones = seleccionar_distribuciones(familia=familia, verbose=verbose)

 distribucion_ = []

143

 log_likelihood_= []

 aic_ = []

 bic_ = []

 n_parametros_ = []

 parametros_ = []

 for i, distribucion in enumerate(distribuciones):

 print(f"{i+1}/{len(distribuciones)} Ajustando distribución: {distribucion.name}")

 try:

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 distribucion_.append(distribucion.name)

 log_likelihood_.append(log_likelihood)

 aic_.append(aic)

 bic_.append(bic)

 n_parametros_.append(len(parametros))

 parametros_.append(parametros_dict)

 resultados = pd.DataFrame({

 'distribucion': distribucion_,

 'log_likelihood': log_likelihood_,

 'aic': aic_,

 'bic': bic_,

 'n_parametros': n_parametros_,

144

 'parametros': parametros_,

 })

 resultados = resultados.sort_values(by=ordenar).reset_index(drop=True)

 print ('resultados---',resultados)

 except Exception as e:

 print(f"Error al tratar de ajustar la distribución {distribucion.name}")

 print(e)

 print("")

 return resultados

def plot_distribucion(texto, x, nombre_distribucion, ax=None):

 '''

 Esta función superpone la curva de densidad de una distribución con el

 histograma de los datos.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 nombre_distribuciones : str

 nombre de una de las distribuciones disponibles en `scipy.stats`.

 Returns

 resultados: matplotlib.ax

 gráfico creado

145

 Raises

 Notes

 '''

 distribucion = getattr(stats, nombre_distribucion)

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 x_hat = np.linspace(min(x), max(x), num=1000)

 y_hat = distribucion.pdf(x_hat, *parametros)

 if ax is None:

 fig, ax = plt.subplots(figsize=(7,4))

 ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

 ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5);

 ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)

 ax.set_title('Ajuste distribución '+texto)

 ax.set_xlabel('x')

146

 ax.set_ylabel('Densidad de probabilidad')

 ax.legend();

 print('---------------------')

 print('Resultados del ajuste')

 print('---------------------')

 print(f"Distribución: {distribucion.name}")

 print(f"Dominio: {[distribucion.a, distribucion.b]}")

 print(f"Parámetros: {parametros_dict}")

 print(f"Log likelihood: {log_likelihood}")

 print(f"AIC: {aic}")

 print(f"BIC: {bic}")

 return ax

def plot_multiple_distribuciones(texto,x, nombre_distribuciones, ax=None):

 '''

 Esta función superpone las curvas de densidad de varias distribuciones

 con el histograma de los datos.

 Parameters

 x : array_like

 datos con los que ajustar la distribución.

 nombre_distribuciones : list

 lista con nombres de distribuciones disponibles en `scipy.stats`.

 Returns

147

 resultados: matplotlib.ax

 gráfico creado

 Raises

 Notes

 '''

 if ax is None:

 fig, ax = plt.subplots(figsize=(7,4))

 ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5)

 ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)

 ax.set_title('Ajuste distribuciones al histograma de line 332'+texto+' anuales totales')

 ax.set_xlabel('x')

 ax.set_ylabel('Densidad de probabilidad')

 for nombre in nombre_distribuciones:

 distribucion = getattr(stats, nombre)

 parametros = distribucion.fit(data=x)

 nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

 if not p=='x'] + ["loc","scale"]

 parametros_dict = dict(zip(nombre_parametros, parametros))

 log_likelihood = distribucion.logpdf(x, *parametros).sum()

148

 aic = -2 * log_likelihood + 2 * len(parametros)

 bic = -2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

 x_hat = np.linspace(min(x), max(x), num=1000)

 y_hat = distribucion.pdf(x_hat, *parametros)

 ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

 ax.legend();

 return ax

def ajuste(serie,texto):

 serie = serie

 texto = texto

 # Ajuste y comparación de distribuciones

 #
==
======

 resultados = comparar_distribuciones(texto,

 x=serie.to_numpy(),

 familia='realall',

 ordenar='aic',

 verbose=False

)

 resultados

 fig, ax = plt.subplots(figsize=(8,5))

 plot_distribucion(texto,

 x=serie.to_numpy(),

 nombre_distribucion=resultados['distribucion'][0],

149

 ax=ax

);

 fig, ax = plt.subplots(figsize=(8,5))

 plot_multiple_distribuciones(texto,

 x=serie.to_numpy(),

 nombre_distribuciones=resultados['distribucion'][:4],

 ax=ax

);

 return

#MAIN CÓDIGO

def main():

 ingr = []

 gast = []

 ingr,gast = datosIngrGast()

 for item in range(1,3):

 comodin = []

 texto = ''

 serie = []

 comodin = ingr if item ==1 else gast

 texto = 'Ingresos' if item ==1 else 'Gastos'

 #estadisticos básicos

 serie = pd.Series(comodin)

 ajuste(serie, texto)

 return

