Hoss- Version: -7

01/10/2024

-*- coding: utf-8 -*-

Created on Sadbado 24/06/2024
ph_principal.py

HOSS (Human Organizations Simulation Start)
José Quintas Alonso

@author: invat

import mysqgl.connector
import ph_herramientas
import ph_pantallasES

import ph_sociedad

import ph_ERED

import ph_seleDist

import ph_salidas

import random

from sinfo import sinfo

import warnings

warnings.filterwarnings(‘ignore')

#estructuras globales. Inicializar variables

#nombrePh tiene como clave el id y como valor el puntero al objeto nacido

nombrePh={}

#nombreOrg tiene como clave el id y como valor el puntero al objeto Organizacion creada

nombreOrg={}

datoslniciales=[] #Poblacion Inicial, afio de inicio, etc...

datosReprPoblPib={} #iteracion,Poblacion, Nacimientos, defunciones, PIB

tiempo=1 #tiempo Global,tiempoabsoluto, en todo caso, comenzara por UNO: Poblacion
inicial

#Diccionario individual que se guarda en tabla MySQL, puede cambiar anualmente

miDicActividades={1:'"Comer',2:'Pareja’,3:'Hijos'4:'Descanso'5:'Sex0',6:'Salud’,7:'Amistad,
8:'Estudio’,\

9:'Preparar oficio’,10:'Redes sociales',11:'Vestirte,12:'Casa',13:'Coche’,\
14:'Milit pol-sindi',15:'Deporte',16:'Adicciones’, 17:'Escribir leer',18:'Asac recreati',\

19:'Satis Curiosid',20:'Jugar Azar',21:'Familia',22:'Manualidades'23:'Militancia
ONG/,24:"' Arte Ciencia'\

25:'Viajar Emigrar’, 26:'Seguir la moda',27:'Ejercer poder',28:'Investigar’,\

29:'Emprender',30:'Deporte riesgo',31:'Lider publico',32:'Espiritualidad',33:'Estudios
medios',34:'Estudios superiores'}

diccioArquet={"amigo':[7,16],cuidador':[23] /explorador':[25] ,/heroe':[15,30] ,\
'inocente':[26] ,rebelde':.[14] ,'sabio': [19],gobernante':[27,31],\

‘creador':[17,24,28] /bufon':[18],mago":[8,29],amante":[5]}

#Diccionario individual que se guarda en tabla MySQL y da su Arquetipo y Caracter de
gestacion

miDicPhBasi={"amigo'.0,'cuidador':0 ,explorador':0 ,/heroe':0, 'amante':0 ,\
'inocente":0 /rebelde’:0 /sabio':0,gobernante':0,creador':0 ,/bufon':0,mago":0, \

‘arquetipo1':0,'arquetipo2':0, 'caracter1':0,'caracter2':0 }

miDicPhBasiModelo = {'amigo':0, cuidador':0 ,explorador':0 ,heroe":0, 'amante":0,\

'inocente":0 /rebelde’:0 /sabio":0,gobernante':0,creador':0 ,/bufon':0,mago":0, \

‘arquetipo1':0,'arquetipo2':0, 'caracter1':0,'caracter2':0 }

diccioCaract={'"amorfo':[16],apasionado'[27,31] /apatico':[26] ,colerico':[17,29,30] ,\

'flematico':[8,15,19,24,28] /sanguineo':[7,14] /sentimental':[23,25,32] }

listaNoAsignadas=[2,3,5,10,12,13,20,21,22,33,34] #lista de importantes actividades

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

class ph():
def __init__(self,dni):
self.dni=dni

self.inicioAbsoluto=0 # Debe marcar en que iteracién nacio este ph(): por ej nacien la
iteracion 1949 (por eso tengo 75 afios, dado que estamos en 2024)

self.edad=0 # su edad. Ej: 75 afios;

self.iteracion = 0 #iteracion actual, normalmente la llamo: tiempo en el main menu
self.sexo=" #biologico

self.intencionalidad='No plantea' #Reforzar, Busqueda, Flotar, Abandono
self.idFiscalFamilia=0

self.dniPareja=0 # dni pareja reproductora actual

self.idFiscalEmpresa=0 #Empresa en la que trabaja

self.riesgoTolerancia=0 #toleracia personal al riesgo en general; cero: intolerante al
riesgo: aversion;

self.idPadre=0 #dato que no cambia. -1 si es de la PI
self.idMadre=0 #dato que no cambia. -1 si es de la Poblacién Inicial
self.coefilnt=0 #coeficiente inteligencia

self.resiliencia=0

self.potencial='0-Ba-Me'

self.atraPers='N' #se le calculado en nacery nacerPI

self.sumaVa3Ano=0.0 #de cada actividad ejecutada anualmente, suma de va3 -indice
de éxito

self.sumaVa9Ano=0.0 #de cada actividad ejecutada anualmente, suma de va9 -indice
de eficacia

self.situlaboposi=1 #situacion laboral, cuando naces: infancia (Menos en PI!!) . Los
tres campos se guardan en tabla iteracionecon

self.antiguedad=0 #antiguedad en esa situlaboposi

self.climLabo='Bien' #clima laboral (incluida la infancia, jubilacion...)
MBien,Bien,Mal,MMalL

self.palp=0 #ahorros, inversiones, activos... Actualmente es el AHORRO acumulaado

self.gastoAnyo =0 #en formaGasto().- el gasto del ailo en curso

self.ingrxRBU=0 #;cuanto cobra en total?: ingrxTrab + ingrxkRBU

self.ingrxTrabB = 0 #solo salario.

self.plusProductividad =0 #se renuava cada afio, sube o baja...incluido en ingrxTrab

self.ingrxTrab=0 #incluye la parte salarial ingrxTrabB + plusProductividad

self.ingrTotal= self.ingrxTrab + self.ingrxRBU

;Cuanto es la parte salarial? = ingrxTrab - plusProductividad

#diccionarios INDIVIDUALES

self.miDicPhBasi={'"amigo':0, cuidador'.0 /explorador'.0 /heroe':0, 'amante':0 ,\
'inocente’:0 ,rebelde’:0,sabio’:0,gobernante':0,creador':0 ,/bufon':0,mago".0, \
'arquetipo1':0,arquetipo2':0, 'caracter1':0, caracter2':0 }

self.miDicPh={1:['X},0,0,0,0,0,0,0,0,0]}

def getDatos(self):

self.dni, self.inicioAbsoluto, self.edad, self.iteracion,self.sexo, self.intencionalidad,
self.idFiscalFamilia, \

self.dniPareja,self.idFiscalEmpresa, self.riesgololerancia, self.idPadre, self.idMadre,
self.coefilnt, self.resiliencia,\

self.potencial,self.atraPers, self.sumaVa3Afo,self.sumaVa9Ano,self.situlaboposi
,self.antiguedad, self.climLabo, self.palp,self.gastoAnyo,\

self.plusProductividad, self.ingrxTrabB,self.ingrxTrab, self.ingrxRBU,
self.ingrTotal,self.miDicPhBasi,self.miDicPh

return

class Organizacion():
def __init__(self,dniFiscal):
self.dniFis=dniFiscal

self.tipo=" #pyme, empresa, familia, narcos, secta, ejercito, estado, banco,
universidad

self.creacion=0 #iteracion global de creacion, tiempo global
self.liquidacion=0 #iteracion global de liquidacion, divorcio
self.objetivo=" #proposito, objetivo principal

self.ingresos=0

self.gastos=0

self.inversion=0

self.deuda=0

self.caracter=" #Pu-publico, Co-concertado,Pr-privado.- La financiacion publica a
Concertada es por servicio a ph() concreto

#diccionario INDIVIDUAL

self.miDicOrg={1:['X},0,0,0,0,0,0,0,0,X']}

def getDatos(self):
self.dniFis,self.tipo, self.creacion,self.liquidacion,self.objetivo,\
self.ingresos,self.gastos,self.inversion,self.deuda,self.caracter,self.miDicOrg
return

#FIN declaraciones

#CAJA DE HERRAMIENTAS

def borrado():
Borra los datos de toda tabla de MySQL
miCursor=miConexion.cursor()
sqgl="delete FROM tercerbd.desastres;'
miCursor.execute(sql)
sqgl="delete FROM tercerbd.atractivopersonal;'
miCursor.execute(sql)

sgl="delete FROM tercerbd.sociedad;’

miCursor.execute(sql)

sgl="delete FROM tercerbd.iteracion;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.iteracionecon;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.nacer ;'
miCursor.execute(sql)

sql="ALTER TABLE tercerbd.nacer AUTO_INCREMENT = 1;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.midicphbasi;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.organizaciones;'
miCursor.execute(sql)

sql="alter table tercerbd.organizaciones AUTO_INCREMENT=1;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.orgafami;'
miCursor.execute(sql)

sql="alter table tercerbd.orgafami AUTO_INCREMENT=1;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.organiza_miembros;'
miCursor.execute(sql)

sqgl="delete FROM tercerbd.organiza_miembrosfami;'
miCursor.execute(sql)

miConexion.commit()

miCursor.close()

return

def sexoBiol():
azar = round(random.random(), 2)
sex ='V'if azar <0.5 else 'M'

return sex

def formaDiccDecisionGeneral(regActi):
global anyosVidaMax
diccionario ={}
reg = regActi
conta=0
VM = anyosVidaMax - 18 #debe tener acceso al valor concreto calculado en ph_principal

actividadesPosiblesUnidades
=[2,3,5,7,9,10,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34] #
actividades

forainreg:
if a[0] in actividadesPosiblesUnidades:
conta +=1
clave = a[1].rstrip()
valor1 = int(a[6])
valor2 = anyosVidaMax if a[7] == 'VM' else int(a[7]) #NP
valor3 = VM if ga[8] == 'VM' else int(a[8]) #VM
diccionario [clave] = [a[0],valor1,valor2,valor3]

return diccionario

def recuperarTablasitulaboposi():
#se cargan los 32 primeros registros de la tabla actividades
sqlselect="Select * from tercerbd.situlaboposi "
regActi = ph_herramientas.selectBDNoWhere(sqlselect)
regis = [list(a) for a in regActi]

return regis

def proxldOrganizacion(familia):
familia = familia
#return el préximo id o dniFiscal de la Organizacion a crear

miCursor=miConexion.cursor()

if familia == True:

miCursor.execute("SELECT “AUTO_INCREMENT" FROM
INFORMATION_SCHEMA.TABLES\

WHERE TABLE_SCHEMA = "tercerbd' AND TABLE_NAME ='orgafami';")
else:

miCursor.execute("SELECT "AUTO_INCREMENT" FROM
INFORMATION_SCHEMA.TABLES\

WHERE TABLE_SCHEMA = "tercerbd' AND TABLE_NAME ='organizaciones';")
idOrg=miCursor.fetchall()
idOrganizaciones=idOrg[0][0]
miConexion.commit()
miCursor.close()

return idOrganizaciones

def formaEmpresa():
#forma empresas de estos 10 tipos incluidos en la lista
tipo = ['industria’/servicios' campo'ensenanza'/sanidad’,\
'software'/seguridad’,investigacion',finanzas',administracion']
azar = random.randint(0,9)
tipo_empresa = tipo[azar]
unidadxAnyo =100
precioUnidad =13
persTrab =15

sql="INSERT INTO tercerbd.organizaciones
(tipo,creacion,objetivo,unidadxAnyo,precioUnidad,persTrab) VALUES
(%s,%s,%s,%s,%s,%s)"

valor=(tipo_empresa,tiempo, Produccién’,unidadxAnyo,precioUnidad,persTrab)
ph_herramientas.insertUno(sql,valor)

return

def atractivoPersonal():
#se calcula el INDICE de cada Actividad para cada phy se graba en Mysqgl. No cambia.

#en el diccionario miDicPh, campo va3, formara parte del indiceExito de cada Actividad
de cada pH.

listaTerna =[]

dicGraba={1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0,15:0,16:0,
17:0,18:0,\

19:0,20:0,21:0,22:0,23:0,24:0, 25:0, 26:0,27:0,28:0, 29:0,30:0,31:0,32:0,33:0,34:0}
#tendras que seleccionar el DNI a los que no tengan calculado al atractivoPersonal
for dniin nombrePh:
objeGene = nombrePh.get(dni)
if objeGene.atraPers =="'N":

objeGene.atraPers = 'S’

listaTerna.append((dni,objeGene.miDicPhBasi['arquetipo1'],0bjeGene.miDicPhBasi['cara
cter1']))

for lista in listaTerna: #calculo
matriz =[]
dni=lista[0] #inicializacion
arquetipo=lista[1]
caracter=lista[2]
foriin[1,4,6,9,11]:
azar=random.randint(6,10)
dicGrabali]=azar #comer,descansar,salud,vestido, preparar oficio...

#se supone que las actividades de arquetipo, caracter, obligatorias, no asignadas son
conjuntos disjuntos...

#diccioArquet NO es modificado en esta funcion: solamente se LEE
for arquetipo in diccioArquet:
listaA =]
listaA = diccioArquet[arquetipo] #quiero que meta los valores numericos

foriiin listaA:

10

azar=random.randint(5,9)
dicGrabalii]=azar
for caracter in diccioCaract:
listaC=[]
listaC=diccioCaract[caracter]
foriiin listaC:
azar=random.randint(4,8)
dicGrabalii]=azar
foriii in listaNoAsignadas:
listaNA=[]
listaNA=listaNoAsignadas
foriii in listaNA:
if iii in [3,5,10,21]:
azar=random.randint(6,9)
dicGrabaliii]=azar
else:
azar=random.randint(1,7)
dicGrabaliii]=azar

#tgraba en "atractivopersonal”. En miDicPh() no graba, lo hara a través de Indice de
Exito de Actividad

foriinrange(1,35):
valor3=(dni,i,dicGraba.get(i))
matriz.insert(dni,tuple(valor3))
sql3="INSERT INTO tercerbd.atractivopersonal (dni,actividad,atractivo) \
VALUES (%s,%s, %s)’'

ph_herramientas.insertBD(sql3,matriz) #graba en tabla atractiviPersonal tipo
executemany

return

def asignaArquetipo(i):
dicOrdenado ={}

miDicPhBasi =i

11

lo llama gestarPly gestar. Se asigna por azar en Pl

dicOrdenado = sorted(miDicPhBasi.items(), key= lambda i:i[1],reverse=True)
miDicPhBasi['arquetipo1'] = dicOrdenado[0][0]

miDicPhBasi['arquetipo2'] = dicOrdenado[1][0]

return

def asignaCaracter(i):
#lo llama gestarlPy gestar
#el azar determina el caracter
dentro=True
miDicPhBasi =i
caract=['amorfo/colerico' /apasionado), 'flematico' /sanguineo' /sentimental,apatico']
while dentro:
foriinrange (0,2):
azarl=random.randint(0,3)
azar2=random.randint(4,6)
if azar1 !=azar2:
dentro=False
miDicPhBasi['caracter1'] = caract[azar1]
miDicPhBasi['caracter2'] = caract[azar2]

return

def riesgololerancia(dni):
Puede tenerse aversion alriesgo o puede irse a buscarlo
segun el arquetipo: se asigna una tolerancia al riesgo
la maxima tolerancia es 5, la minima es 0 (aversién al riesgo)
se graba en nacer; por gestarPInicial y Gestar.- En OBJETO en nacer_ph
se utiliza en la asignacion de trabajo y en S-Dificil
dni=dni

mIAC =[]

12

objeGene1=nombrePh.get(dni)

miAC =[objeGene1.miDicPhBasi['arquetipo1'],0bjeGene1.miDicPhBasi['arquetipo2']]

if 'heroe' in miAC:
riesgololer=5
elif 'gobernante'in miAC:
riesgololer =5
elif 'mago’ in miAC:
riesgololer = random.randint(3, 4)
elif 'explorador' in miAC:
riesgololer = random.randint(3, 4)
elif 'rebelde’in miAC:
riesgololer = random.randint(3, 4)
else:

riesgololer = random.randint(0,3)

return riesgololer

def potencialCiResi(ci,re):

potencial ='0-Ba-Me' #Bajo o casi Medio

coefCl =ci

coefResi=re

sumaCoef = coefCl + coefResi

if 1.39 <sumaCoef < 1.69:
potencial ='1-Medio’

elif 1.69 <sumaCoef < 1.9:
potencial = '2-Altos'

elif 1.9 <sumaCoef <2.01:
potencial ='3-Malto'

return potencial

13

#FIN CAJA DE HERRAMIENTAS. He comprobado que todas son llamadas 14-7-2024

def cargarActiDat1245(objeGene,numActi,regActi):
#DAR DE ALTA UNA ACTIVIDAD -numActi- EN miDicPh() del ph(objDni)
#objeGene=nombrePh.get(objDni)
i = numActi
#actvidades que tienen 0 en coste de tiempo
regActi[i-1][5] = random.randint(8,25) if regActi[i-1][5] == 0 else regActi[i-1][5]
objeGene.miDicPh[i] =['X}0,0,0,0,0,0,0,0,0]
objeGene.miDicPh[i][0]=regActi[i-1][1] #nombre Actividad
objeGene.miDicPh[i][1]=regActi[i-1][4] #impacto economico
objeGene.miDicPh[i][4]=regActi[i-1][5] #coste tiempo/ lo que le va a durar

objeGene.miDicPh[i][7]=regActi[i-1][2] #riesgo actividad

return

def calderaDesastres(pobl,itera):

#Esta implementado pandemias y crisis econdmicas.

#tienen implicaciones sobre muerte y sobre trabajo

def pandemia():
tipo='P"
denomPand=[200,100,70,50,25,15,10,5,2] # va de CERO a OCHO
#personasAfectadas-->pA
azar1=random.randint(5,7) #5y 7 incluidos
azar2=random.randint(3,5)

azar3=random.randint(3,8)

14

denomi1=denomPand[azar1]

denom2=denomPand[azar2]

denom3=denomPand[azar3]

pAMuerte=int(poblacion/denom1)

pATrabajo=int(poblacion/denom?2)

pAPalp=int(poblacion/denom3)

#anota desastre en tabla desastres

sgl1="INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \
VALUES (%s,%s, %s,%s,%s)"

valor1=(iteraGlobal,tipo,pAMuerte,pATrabajo,pAPalp)

ph_herramientas.insertUno(sql1,valor1)

#ejecuta muertes.-

sqlselect1="select id,edad from nacer where fallecido='N"

registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

long=len(registro)
if pAMuerte >= long:

pAMuerte=int(long+1) # +1 preparando para el fory entero no float
else:

pAMuerte =int(pAMuerte+1) # +1 preparando para el fory entero
foriin registro[0:pAMuerte]:

idNacer=0

puntoHumano=0

idNacer=i[0] #id o dni.- idNacer es entero

edad=i[1]

puntoHumano=idNacer #idNacer es int

dni=(idNacer,)

sqlupdate2="UPDATE tercerbd.nacer set fallecido='S' where id=%s"

ph_herramientas.updateUno(sqlupdate2,dni) #al morir se da de baja definitiva de
toda organizacion

sqlupdate2="UPDATE tercerbd.organiza_miembros set esBaja='S' where
id_nacer=%s"

15

ph_herramientas.updateUno(sqglupdate2,dni)

sqlupdate2="UPDATE tercerbd.organiza_miembrosfami set esBaja='S' where
id_nacer=%s"

#ph_herramientas.updateUno(sqglupdate2,dni)

sqlupdate2= "UPDATE tercerbd.iteracionecon set va2='S' where dni=%s and
tiempo=%s and actividad=33"

#valor2=(idNacer,edad)
#ph_herramientas.updateBD(sqlupdate2,valor2)
objeto=nombrePh.get(puntoHumano) #En objeto esta el objeto
if objeto is not None:
#quitar referencia a Pareja
pareja = objeto.dniPareja
if pareja !=0:
objePareja= nombrePh.get(pareja)
if objePareja is not None:
objePareja.dniPareja=0

del objeto #para BORRAR el objeto que ha fallecido

#ER_AD se encargara luego de completar el proceso, grabar...etc
#tejecuta perdida de trabajo y reduccién del ingresoAnual
sglselect1="select id from tercerbd.nacer where fallecido="N"

registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

long=len(registro)
if pATrabajo >= long:

pATrabajo=int(long+1) # +1 preparando para el for y entero no float
else:

pATrabajo =int(pATrabajo+1) # +1 preparando para el for y entero
foriin registro[0:pATrabajo]:

idNacer=0

puntoHumano=0

idNacer=i[0] #id o dni.- idNacer es entero

16

puntoHumano=idNacer #idNacer es int
objeto1=nombrePh.get(puntoHumano) #En objeto1 esta el objeto
if objeto1 is not None:
if objeto1.situlaboposi >=4:
objeto1.situalaboposi =4
objeto1.ingrxTrab =0
else:
pass
#ER_AD se encargara luego de completar el proceso, grabar...etc

return pAMuerte

def crisis():
tipo='E'
denomCrisis=[200,100,70,50,25,15,10,5,2]
#personasAfectadas-->pA
azar2=random.randint(3,5)
azar3=random.randint(3,8) #3y 8 incluidos
denom2=denomCrisis[azar2]
denom3=denomCrisis[azar3]
pATrabajo=round(poblacion/denom2,0)
pAPalp=round(poblacion/denom3,0)
#anota desastre en tabla desastres
sql1="INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \

VALUES (%s,%s, %s,%s,%s)"

valor1=(iteraGlobal,tipo,0,pATrabajo,pAPalp)
ph_herramientas.insertUno(sql1,valor1)
#ejecuta perdida de trabajo y reduccién del ingresoAnual
sqlselect1="select id from nacer where fallecido='N""

registro=ph_herramientas.selectBDNoWhere(sqlselect1) #como siempre: lista de
tuplas

long=len(registro)

17

if pATrabajo >= long:
pATrabajo=int(long+1) # +1 preparando para el for y entero no float
else:
pATrabajo =int(pATrabajo+1) # +1 preparando para el fory entero
foriin registro[0:pATrabajo]:
idNacer=0
puntoHumano=0
idNacer=i[0] #id o dni.- idNacer es entero
puntoHumano=idNacer #idNacer es int
objeto1=nombrePh.get(puntoHumano) #En objeto1 esta el objeto
if objeto1 is not None:
if objeto1.situlaboposi >=4:
objeto1.situalaboposi =4
objeto1.ingrxTrab =0
else:
pass
#ER_AD se encargara luego de completar el proceso, grabar...etc

return

poblacion=pobl
iteraGlobal=tiempo #es el tiempo Global, diferente de la edad de cada persona
pAMuerte =0
#ruleta de la Fortuna
ruleta=random.randint(1,10)
if ruleta<=7:
tipo='N'
sql1="INSERT INTO desastres (iteraGlobal,tipo,muertos,paro,palp) \
VALUES (%s,%s, %s,%s,%s)"
valor1=(iteraGlobal,tipo,0,0,0)
ph_herramientas.insertUno(sql1,valor1)

elif ruleta >7 and ruleta <=9: #falta modelizar el largo de Kondratiev

18

crisis()
elif ruleta==10:
pAMuerte = pandemia()

return pAMuerte

#FIN REGLAS SOCIEDAD

#POBLACION INICIAL Y SIGUIENTES GENERACIONES: GESTACION Y NACIMIENTO

def azarCl():
dentro=True
while dentro:
azarCl = round(random.random(), 2)
if azarCl >0.3:
dentro = False

return azarCl

def azarResi():
dentro=True
while dentro:
azarResi = round(random.random(), 2)
if azarResi > 0.3:
dentro = False

return azarResi

def nacerPl(poblacionlnicial,regActi):
Poblacion Inicial (Pl).

#Como proceden de Creacidn (no de evolucién) tienen que estar YA en edad de procrear
y trabajar

Crea los ph(), graba en nacer, miDicPhBasi, iteracion (miDicPh)

def edadPI():

19

edadPl = random.randint(18,40)

return edadPlI

def valoresmiDicPhBasiPI(a):
relacion =['arquetipo1'arquetipo2, 'caracter1'/caracter2']
aa=a
objeGene = nombrePh.get(aa)
foriin miDicPhBasi: # rellena con random, que serdn arquetipos y caracteres

objeGene.miDicPhBasi[i] = round(random.random(), 4) ifi notin relacion else 0

asignaArquetipo(objeGene.miDicPhBasi)
asignaCaracter(objeGene.miDicPhBasi)

return

#MAIN nacerPI

poblacionlnicial = poblacionlnicial
regActi = regActi

lista =]

listaMDPB=[]

matriz1 =[]

matriz2 =[]

PlusP =11400/10 #Deberia existir un limite maximo productividad: el 10% del
ingrxTrabB

#al ser poblacion inicial, el primer dni=1y el ultimo dni=poblacionlnicial
matriz2 =[]
foriinrange(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.
listaMDPB.append(0)
foriinrange(0, 10): # warning:(range(a,b))es hasta b-1.
lista.append(0)

for ain range(1, poblacionlnicial+1):

20

#nacen los ph() de la Poblacion Inicial
rbuCapita =11400

dni=a

#crea objeto hijo/a

nombrePh[dni] = ph(dni)

#actuo sobre el objeto creado

objeGene=nombrePh.get(dni) #objeGene apunta al objeto hijo

objeGene.dni = dni

objeGene.edad = edadPI() # la edad del ser que se hace por random en este caso para

procrear

objeGene.inicioAbsoluto = 0 #tiempo Global
objeGene.sexo = sexoBiol()
objeGene.intencionalidad ='No plantea’
objeGene.idFiscalFamilia =0
objeGene.dniPareja=0
objeGene.idFiscarEmpresa =0

objeGene.riesgololerancia=5 # DEBE rellenarse cuando sepas arquetipos con

riesgololer

objeGene.idPadre = -1

objeGene.idMadre = -1

objeGene.coefilnte = azarCl()

objeGene.resiliencia = azarResi()

objeGene.potencial = potencialCiResi(objeGene.coefilnte,objeGene.resiliencia)
objeGene.atraPers ='N'

objeGene.sumaVa3Ano=0.0

objeGene.situlaboposi=1

objeGene.palp=0

objeGene.gastoAnyo =0

objeGene.plusProductividad = PlusP + (PlusP/random.randint(8,10)) -

(PlusP/random.randint(5,10))

21

objeGene.ingrxTrab =0

objeGene.ingrXRBU = rbuCapita

objeGene.miDicPhBasi = miDicPhBasi

#resumen economico

valoresmiDicPhBasiPl(a) # Asigna Arquetipo y Caracter

listaMDPB[0] =a

indiceLista=1

foriin miDicPhBasi:
listaMDPBJindiceLista] = objeGene.miDicPhBasi[i]
indicelLista +=1

matriz2.insert(a,tuple(listaMDPB))

#AHORA puede calcularse el riesToles !!!

riesToler = riesgoTolerancia(dni)

objeGene.riesgololerancia = riesToler

listaMDPB = []

foriinrange(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.

listaMDPB.append(0)

lista[0] = objeGene.edad # la edad del ser que se HIZO por random en este caso para

procrear

lista[1] =0 # es nacerPI

lista[2] = objeGene.sexo

lista[3] = 'N' #fallecido NO

lista[4] = objeGene.riesgololerancia #Tolerancia al riesgo
lista[5] = -1 #idPadre

lista[6] = -1 #idMadre

lista[7] = objeGene.coefilnte #coeficiente intelectual
lista[8] = objeGene.resiliencia #resiliencia

lista[9] = objeGene.potencial

matriz1.insert(a,tuple(lista))

22

lista =]
foriinrange(0, 10): #warning:(range(a,b))es hasta b-1.

lista.append(0)

sql2 ="INSERT INTO tercerbd.midicphbasi (dni,amigo,cuidador,explorador ,heroe,
amante ,\

inocente ,rebelde ,sabio,gobernante,creador ,bufon,mago, \
arquetipo1,arquetipo2, caracterl,caracter2)\
VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s)"
tupla2 = matriz2
ph_herramientas.insertBD (sql2,tupla2)

#se graba en la tabla nacer

tupla1 = matriz1

sql1 ="INSERT INTO tercerbd.nacer (edad,inicioAbsoluto,sexo,fallecido,
riesgololerancia,\

idPadre,idMadre,coefilnte, resiliencia, potencial) VALUES (%s,%s,%s,
%s,%s,%s,%s,%s,%s, %s)"

dni = ph_herramientas.insertBD(sql1, tupla1) #dni del ph() que se acaba de grabar en
ultimo lugar

for ain range(1, poblacionlnicial+1):
matriz4 =[]
matriz5 =[]
objeGene = nombrePh.get(a)
#actividades base

#;Cuanto importan las necesidades basicas de cada ph() de la Pl este afo?. Todos
iguales

relaActi=[1,2,3,4,6,7,8,9,10,11] #relacion de actividades que se les activan;

#Pl todos pueden trabajar, tener hijos, estudiar... pues su edad ha sido elevada.
#Sus hijos: normal :relaActi=[1,4,6,7,10,11]

foriinrelaActi: #se escribe en objeGene.miDicPh

cargarActiDat1245(objeGene,i,regActi)

23

#grabar en tabla iteracion el contenido de miDicPh ; para el dni en curso
foriin objeGene.miDicPh.keys():
ifi==3:
objeGene.miDicPh[i][5] =9 #quieren tener 9 hijos; si no es PI, es x azar en decision
iterGraba =[]

tuplad =)

foriiinrange (0,14): #inicializa iterGraba

iterGraba.append(0)

iterGrabal[0] = a

iterGraba[1] = tiempo #tiempo Global: vueltas hasta duracionSimulacion
iterGraba[2] = lista[0] #edad

iterGraba[3] =i

iterGraba[4] = objeGene.miDicPh[i][0] #va0
iterGraba[5] = objeGene.miDicPh[i][1] #va1
iterGraba[6] = objeGene.miDicPhli][2] #va2
iterGraba[7] = objeGene.miDicPh[i][3] #va3
iterGraba[8] = objeGene.miDicPh[i][4] #va4
iterGraba[9] = objeGene.miDicPhli][5] #va5
iterGraba[10] = objeGene.miDicPh[i][6] #va6
iterGraba[11] = objeGene.miDicPhl[i][7] #va7
iterGraba[12] = objeGene.miDicPh[i][8] #va8
iterGraba[13] = objeGene.miDicPh[i][9] #va9

matriz4.insert(a,tuple(iterGraba))

sql="INSERT INTO tercerbd.iteracion (dni,tiempo, edad, actividad ,\
va0, val,yva2, va3, va4, vab, vab, va7,va8,va9)\
VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"
tuplad = matriz4

ph_herramientas.insertBD (sql,tupla4)

24

lista2 =]
foriinrange (0,18):
lista2.append(0)
lista2[0] = a #dni
lista2[1] = tiempo #iteracion
lista2[2] = objeGene.edad #edad
lista2[3] = 4 #situacion laboral
lista2[4] ='S' #¢es la ultima?
lista2[5] = 0 #suma va3 - no calculada aun -PI-
lista2[6] = O ##suma de va9, no calculado aun
lista2[7]= 0 #palp
lista2[8] = rbuCapita #gasto este primer anyo
lista2[9] = rbuCapita #ingrxRBU .
lista2[10] = O #ingrx Trabajo base
lista2[11] = 0 #plus productividad
lista2[12] =0 #.- ingrxTrab
lista2[13] = lista2[12] + lista2[9] #ingrTotal, estamos en nacerPlI,
lista2[14] = objeGene.intencionalidad
lista2[15] = 0 #idFiscal Familia
lista2[16] = 0 #idPareja
lista2[17] = O #idFiscalEmpresa

matriz5.insert(a,tuple(lista2))

sql="INSERT INTO tercerbd.iteracionecon (dni,tiempo,
edad,situlabo,ultima,sumava3,sumava9,palp,\

gastoanyo,ingrxRBU,ingrxTrabB,ingrxPlusP,ingrxTrab,ingrTotal,intenciona,idFiscalFamilia,i
dPareja,idFiscalEmpresa)\

VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s,%s)"

ph_herramientas.insertBD(sql,matriz5)

25

return

def muerte(tiempo):
tiempo =tiempo
#establezce fallecido='S' para senalar registros en nacer e iteracion y POO

#en "nacer"y en POO, cada id SOLO tiene un registro; NO asi en iteracion
def teHaTocado():
edad = objeGene.edad
if edad>edadMax and random.randint(1,100)>30:
fallecido='S'
elif 1 < edad <=18 and random.randint(1,100)>98: #nifios pueden morir...dificil
fallecido='S'

elif 18 < edad < edadMax and random.randint(1,100)>95: #adultps pueden
morir...dificil

fallecido='S'
else:
fallecido='N'

return fallecido

#Todos los vivos cumplen anos y pueden MORIR
edadMax = anyosVidaMax # la esperanza de vida aumenta con el t
numMuertos =0
listaBajas =[]
nombrePhClavesCongeladas =[]
nombrePhClavesCongeladas = list(nombrePh)
for iin nombrePhClavesCongeladas:
objeGene = nombrePh.get(i)
dni=i
muerto =teHaTocado()

#si ha fallecido hay que actualizar nacer, iteraciony la POO

26

if muerto =='S":
valor = (dni,)
sqlupdate2="UPDATE nacer set fallecido='S' where id=%s"
ph_herramientas.updateUno(sqlupdate2,valor)
sqlupdate2="UPDATE organiza_miembros set esBaja='S' where id_nacer=%s"
ph_herramientas.updateUno(sqglupdate2,valor)
sqlupdate2="UPDATE organiza_miembrosfami set esBaja='S' where id_nacer=%s"
ph_herramientas.updateUno(sqlupdate2,valor)
Todas las iteracionecon del fallecido pondran en ultima 'N' pues esta fallecido,
#no hay que hacer calculos actuales con él
valorlte = (dni,tiempo)

sqlupdate2="UPDATE tercerbd.iteracionecon set ultima='N' where dni=%s and
tiempo=%s"

ph_herramientas.updateUno(sqlupdate2,valorlte)
listaBajas.append(dni)
numMuertos +=1

for baja in listaBajas:

#debemos comprobar que no constan como pareja de alguien vivo. Si constaran:
dniPareja=0

objeGeneB = nombrePh[baja]

dniPare = objeGeneB.dniPareja

objeGenePare = nombrePh.get(dniPare)

if objeGenePare !=0 and objeGenePare is not None:
objeGenePare.dniPareja=0

else:
pass

#ahora podemos quitar a la Baja de la lista

del nombrePh[baja]

return numMuertos

def reproducirse():

27

#se buscan Vy M que tienen S en hijos, se escoge uno con una
#se toman cinco genes de unoy cinco de otra y se forma su genomay se asigna un
#sexo por azar. Se graba en la BD; despues de gestar, hay que nacer
#al mundo de los objetos: se llamara nacer_ph
#Cuando tiempo=1 se trata de la Poblacion Inicial que NO ha pasado por ER-ED
#En Pl se les asigno6 a todos la edad para tenery en la actividad 3 se puso-->Hijos='S'
def formaFamilia(idOrganizacion,ingrva17,va18,idDesc):
#Crea Familia o completa otra ya formada con nuevos miembros
def org_mie():

sql="INSERT INTO tercerbd.organiza_miembrosfami (idFiscal,id_nacer,tipo) VALUES
(%s,%s,%s)"

valor=(idOrganizacion,vv,tipo)
ph_herramientas.insertUno(sql,valor)
return

def busca_idFami(vaXX):

sql="select idFiscal from tercerbd.organiza_miembrosfami where id_nacer=%s and
tipo='Familia' and esBaja ="'N"

valor=(vaXX,) #padre
idFiscal_Familia = ph_herramientas.selectBD(sql,valor)
return idFiscal_Familia
objeGeneP=nombrePh.get(va17) #padre
objeGeneM=nombrePh.get(va18) #madre
tipo="Familia'
idDesc = idDesc[0] ifidDesc is tuple else idDesc #evitar que dni aparezca como tupla
if objeGeneP.idFiscalFamilia == 0 and objeGeneM.idFiscalFamilia ==0:
#Ni padre ni madre estan en una familia como progenitores
vv=0
creacion =tiempo
sql="INSERT INTO tercerbd.orgafami (creacion,tipo,ingresos) VALUES (%s,%s,%s)"
valor=(creacion,tipo,ingr)
ph_herramientas.insertUno(sql,valor)

vv=val7 #padre

28

org_mie()

vv=va18 #madre

org_mie()

vv=idDesc #hijo

org_mie()

#es un diccionario:key es idOrganizacion y Value el puntero al objeto
nombreOrg[idOrganizacion]=0rganizacion(idOrganizacion)
nombreOrg[idOrganizacion].tipo='Familia’
nombreOrg[idOrganizacion].objetivo='Procrear’

#nombreOrg[idOrganizacion].ingresos=ingr

objeGeneP.idFiscalFamilia=idOrganizacion
objeGeneP.dniPareja =va18
objeGeneM.idFiscalFamilia=idOrganizacion
objeGeneM.dniPareja =va17
elif objeGeneP.idFiscalFamilia != 0 and objeGeneM.idFiscalFamilia !=0:

#No debe formar familia, pero debe afiadir el hijo a la existente, supongo estan en la

misma

idFiscal_Familia = busca_idFami(va17)
if idFiscal_Familia !=[]:
idOrganizacion = idFiscal_Familia[0][0]
vv =idDesc
org_mieg()
elif objeGeneP.idFiscalFamilia == 0 and objeGeneM.idFiscalFamilia !=0:

#No debe formar familia, pero debe afadir al hijo y al padre a la existente de la

madre

idFiscal_Familia = busca_idFami(va18)

if idFiscal_Familia !=]:
idOrganizacion = idFiscal_Familia[0][0]
vv=val7
org_mie()

objeGeneP.idFiscalFamilia=idOrganizacion

29

objeGeneP.dniPareja =vai18
vv =idDesc
org_mieg()
elif objeGeneP.idFiscalFamilia != 0 and objeGeneM.idFiscalFamilia ==0:

#No debe formar familia, pero debe afadir al hijo y a la madre a la existente del
padre

idFiscal_Familia = busca_idFami(va17)

if idFiscal_Familia !=]:
idOrganizacion = idFiscal_Familia[0][0]
vv=val8
org_mie()
objeGeneM.idFiscalFamilia=idOrganizacion

objeGeneM.dniPareja =va17

vv =idDesc
org_mie()
return

def reproxLista(listaZip,dni):
listaZipln = listaZip
dnilnicial=dni #dobo saber donde comienzo

dni=dni #este ird variando

lista=[]

matriz1 =[]
matriz2 =[]
matriz3 =[]

for tupla in listaZipln:
lista =]
listaMDPB =[]

foriinrange(0, 17): #16 campos; warning:(range(a,b))es hasta b-1.

30

el for)

listaMDPB.append(0)
#crea objeto hijo/a
nombrePh[dni] = ph(dni)
#actuo sobre el objeto creado

objeGene=nombrePh.get(dni) #objeGene apunta al objeto hijo

#cada elemento de listaZipIn viene como (dni1,dni2) una tupla que llamo tupla (en

if nombrePh.get(tupla[0]) is None or nombrePh.get(tupla[1]) is None:
continue

objeGeneP = nombrePh.get(tupla[0])

objeGeneM = nombrePh.get(tupla[1])

v19 = tupla[0] #dni de V

v20 =tupla[1] #dnide M

primero = sexoBiol() #sexo bio que tenga el huevo ser

relacion1 =['rebelde’'sabio'/gobernante’/creador' /bufonmago’\
'‘arquetipo1'/arquetipo?2’, 'caracter1''caracter2']
objeGene.miDicPhBasi = objeGeneM.miDicPhBasi #todos los random de la madre
foriin objeGene.miDicPhBasi:
ifinotinrelacion1 : #rellena con random,los seis primeros

objeGene.miDicPhBasi[i] = objeGeneP.miDicPhBasi[i]

relacion2 =['arquetipo1'arquetipo?2’, 'caracter1'/ caracter2']
foriin objeGene.miDicPhBasi:
if i inrelacion2:

objeGene.miDicPhBasi[i]=0

asignaArquetipo(objeGene.miDicPhBasi)
asignaCaracter(objeGene.miDicPhBasi)

listaMDPB[0] = dni

31

indiceLista =1

foriin miDicPhBasi:
listaMDPBJindiceLista] = objeGene.miDicPhBasi[i]
indiceLista +=1

matriz2.insert(dni,tuple(listaMDPB))

#Crea Familia procrear (true); tb graba en organiza_miembros
ingr = objeGeneP.ingrxRBU + objeGeneM.ingrxRBU

familia = True if objeGeneP.idFiscalFamilia ==0 and objeGeneM.idFiscalFamilia ==
else False

#if familia:
#idOrganizacion=proxldOrganizacion(familia)
#formaFamilia(idOrganizacion,ingr,y19,v20,dni)

idOrganizacion=proxldOrganizacion(familia)

formaFamilia(idOrganizacion,ingrv19,v20,dni)

riesgololer = riesgololerancia(dni) #ya tiene arquetipo1y arquetipo2

#se rellena el objeto en RAM con sus valores
objeGene.dni = dni
objeGene.edad =1 # la edad del ser que se gesta ahora

objeGene.inicioAbsoluto = tiempo #global: num vuelta actual cuando nace: la Unica
vez que se escribe aqui

objeGene.iteracion = tiempo #debe cambiar con cada iteracion
objeGene.sexo = primero #sexo biologico

objeGene.intencionalidad ='Reforzar’

objeGene.idFiscalFamilia = idOrganizacion

objeGene.dniPareja=0

objeGene.idFiscarEmpresa =0

objeGene.riesgololerancia = riesgololer #riesgoToler riesgololerancia
objeGene.idPadre =v19 #idPadre

objeGene.idMadre =v20

objeGene.coefilnte = azarCl()

objeGene.resiliencia = azarResi()
objeGene.potencial = potencialCiResi(objeGene.coefilnte,objeGene.resiliencia)
objeGene.atraPers ='N'

objeGene.situlaboposi=1

objeGene.palp =0

objeGene.gastoAnyo =0
objeGene.plusProductividad =0
objeGene.ingrxTrab=0

objeGene.ingrXRBU = rbuCapita

objeGene.ingrTotal = objeGene.ingrxTrab + rbuCapita
#objeGene.miDicPhBasi = miDicPhBasi

#objeGene.miDicPh ={1:['X0,0,0,0,0,0,0,0,0]} -lo debe crear automaticamente

#Para tabla nacer

foriinrange(0, 10): # warning:range(a,b) es hasta b-1.
lista.append(0)

#Tabla nacer, es un recien nacido

lista[0] =1 # la edad del ser que se gesta ahora

lista[1] =tiempo #global: num vuelta actual

lista[2] = primero #sexo biologico

lista[3] ='N'# Va para tabla nacer es fallecido;

lista[4] = riesgoToler #riesgololerancia

lista[5] = v19 #idPadre

lista[6] = v20 #idMadre

lista[7] = objeGene.coefilnte #coeficiente intelectual

lista[8] = objeGene.resiliencia #resiliencia

lista[9] = objeGene.potencial

matriz1.insert(dni,tuple(lista))

lista =]

#actividades base: miDicPh

33

#:;Cuanto importan las necesidades basicas de cada ph() de la Pl este afio?. Todos
iguales

relaActi=[1,4,6,7,8,10,11] #relacion de actividades que se activan;
foriinrelaActi: #se escribe en objeGene.miDicPh
cargarActiDat1245(objeGene,i,regActi)
#grabar en tabla iteracion el contenido de miDicPh ; para el dni en curso
foriin objeGene.miDicPh.keys():
iterGraba =[]
foriiinrange (0,14):
iterGraba.append(0)
iterGraba[0] = dni
iterGraba[1] = tiempo
iterGraba[2] = 1 #edad: se gesta ahora
iterGraba[3] =i
iterGraba[4] = objeGene.miDicPh[i][0] #va0
iterGraba[5] = objeGene.miDicPh[i][1] #va1
iterGraba[6] = objeGene.miDicPh[i][2] #va2
iterGraba[7] = objeGene.miDicPh[i][3] #va3
iterGraba[8] = objeGene.miDicPhli][4] #va4
iterGraba[9] = objeGene.miDicPh[i][5] #va5
iterGraba[10] = objeGene.miDicPh[i][6] #va6
iterGraba[11] = objeGene.miDicPh[i][7] #va7
iterGraba[12] = objeGene.miDicPh[i][8] #va8
iterGraba[13] = objeGene.miDicPh[i][9] #va9
matriz3.insert(dni,tuple(iterGraba))

dni +=1

tuplal = matriz1

sql1 ="INSERT INTO tercerbd.nacer (edad,inicioAbsoluto,sexo,fallecido,
riesgololerancia,idPadre,\

idMadre,coefilnte, resiliencia, potencial) VALUES (%s,%s,%s, %s,%s,%sSs,%s,%s,%s,
%S)"

34

dniFinal = ph_herramientas.insertBD(sql1, tupla1) #dnidel ph() que se acaba de
grabar en ultimo lugar

sqgl="INSERT INTO tercerbd.midicphbasi (dni,amigo,cuidador,explorador ,heroe,
amante ,\

inocente ,rebelde ,sabio,gobernante,creador ,bufon,mago, \

arquetipo1,arquetipo2, caracter1,caracter2)\

VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s,%s,%s,%s)"
tupla2 = matriz2

ph_herramientas.insertBD (sql,tupla2)

sgl ="INSERT INTO tercerbd.iteracion (dni,tiempo, edad, actividad ,\
va0, val,yva2, vag, va4, vab, va6, va7,va8,va9)\
VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"
tupla3 =matriz3

ph_herramientas.insertBD (sql,tupla3)

#AUn no existe una contabilidad familiar

#if familia:
#ingr = objeGeneP.ingrxRBU + objeGeneM.ingrxRBU + objeGene.ingrXRBU
#objeGeneP.ingrxRBU = objeGeneM.ingrxRBU = objeGene.ingrXRBU =0

#nombreOrg[idOrganizacion].ingresos=ingr

return

#construir Lista con la info de POO

listaV =[]
listaM =[]
listaZip =[]

nombrePhClavesCongeladas =[]

35

estadoslnactivos=['X,N']

#va[0] -->X: no se esta ejecutando / N: no se quiere ejecutar / Texto de actividad:
se esta ejecutando

nombrePhClavesCongeladas = list(hombrePh)
foriin nombrePh: #se eliminan los dni de las parejas en la copia
objeGene = nombrePh.get(i)
if objeGene.dniPareja != 0 and objeGene.dniPareja in nombrePhClavesCongeladas:
nombrePhClavesCongeladas.remove(objeGene.dniPareja)
#En lista hay sin pareja (V o M) y con pareja de dniPareja (pero la pareja NO esté en lista)
foriin nombrePhClavesCongeladas:
objeGene = nombrePh.get(i)
#miDicPh " 3 +-->Hijos
if 18 <objeGene.edad < 65:
if 3in objeGene.miDicPh and objeGene.miDicPh[3][0] not in estadoslnactivos :
if objeGene.dniPareja ==0 : #No tiene pareja, soltero/a
if objeGene.sexo =='V";
listaV.append(objeGene.dni)
else:
listaM.append(objeGene.dni)
elif objeGene.dniPareja != 0 : #Sl tiene pareja y Familia formada
if objeGene.sexo =='V";
listaV.append(objeGene.dni)
listaM.append(objeGene.dniPareja)
else:
listaM.append(objeGene.dni)

listaV.append(objeGene.dniPareja)

for tupla in zip(listaV,listaM):
listaZip.append(tupla) #si distintas longitudes, zip toma la de menor tamafio

#sql="SELECT "AUTO_INCREMENT" FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA = 'tercerbd'\

36

#AND TABLE_NAME ='nacer';" He observador no coincidencia entre valor
autoincrement

#de tabla nacery este de informatio_schema
sqgl ="SELECT count(*) FROM tercerbd.nacer;"
DNI = ph_herramientas.selectBDNoWhere(sql)
dni = DNI[0][0]
dni +=1 #serd el dni del préximo ser nacido; el resto sera dni+1

nacidos = len (listaZip)

reproxLista(listaZip,dni) #Se formaran ALGUNAS familias, se completaran otras, naceran
hijos...

return nacidos

#FIN DE POBLACION INICIAL Y DE SIGUIENTES GENERACIONES: GESTACION Y
NACIMIENTO

#INICIO MOVIMIENTOS ANUALES, ITERACIONES anuales

def iteracionGeneral(plusP,matrizL):

Esta funcion debe afadir una iteracionde a todos los nacidos no muertos
#cada ano una iteracion mas

#en 'tiempo' viene el valor actual que tiende a duracionSimulacion

plusP = plusP

matriz1 =]

matriz2 =[]

matriz3 =[]

matriz4 =[]

matrizLabo = matrizL

37

forind in nombrePh:
edadNew =0
objeGene = nombrePh.get(ind)
dni=objeGene.dni #el id o dni del que va a escribirse una nueva iteracion
edad = objeGene.edad #la edad anterior
edadNew =edad + 1 #esta sera su edad ahora, para grabarla ahora
objeGene.edad = edadNew
objeGene.iteracion = tiempo

ERED: modulo central en decisiones ph() y asuntos economicos individuales

ph_ERED.ERealEDeseo(dni,edadNew,nombrePh,salarioMinimo,cobranRBU,rbuCapita,plu
sPtiempo,pobl,diccDecisionGeneral,matrizLabo,objeGene)

#podemos hacerla con MANY
#senalar que la iteracion ya no sera la ultima: vamos a grabar la nueva

tiempoAnterior =tiempo- 1 #el "tiempo" actual es un afio mas que la ultima iteracion
grabada

valorlterUlt=(dni,tiempoAnterior)

matriz1.insert(dni,valorlterUlt)

asignalntencionalidad(dni,edad) #calculala SUMAYy cambia, si procede,
intencionalidad

foriin objeGene.miDicPh.keys():
iterGraba =[]
tupla3 =)
foriiinrange (0,14):
iterGraba.append(0)
iterGraba[0] = dni
iterGraba[1] = tiempo #tiempo Global: vueltas hasta duracionSimulacion
iterGraba[2] = edadNew

iterGraba[3] = i #actividad

38

iterGraba[4] = objeGene.miDicPh[i][0] #va0
iterGraba[5] = round(objeGene.miDicPhli][1],2) #va1
iterGraba[6] = round (objeGene.miDicPh[i][2],2) #va2
iterGraba[7] = round(objeGene.miDicPhli][3],2) #va3
iterGraba[8] = int(objeGene.miDicPh[i][4]) #va4
iterGraba[9] = int(objeGene.miDicPh[i][5]) #va5
iterGraba[10] = int(objeGene.miDicPh[i][6]) #va6
iterGraba[11] = int(objeGene.miDicPh[i][7]) #va7
iterGraba[12] = objeGene.miDicPh[i][8] #va8
iterGraba[13] = round(objeGene.miDicPh[i][9],2) #va9

matriz2.insert(dni,tuple(iterGraba))

#Grabacion datos economicos de la iteracion en tabla iteracionEcon
lista2 =]
forii in range (0,20): #inicializa lista2
lista2.append(0)
lista2[0] = dni #dni
lista2[1] = tiempo #iteracion
lista2[2] = objeGene.edad #edad
lista2[3] = objeGene.situlaboposi #situacion laboral
lista2[4] = objeGene.antiguedad # antiguedad en esa situlaboposi
lista2[5] = objeGene.climLabo #como se siente es ese puesto
lista2[6] ='S' #;es la ultima?
lista2[7] = objeGene.sumaVa3Ano #suma va3
lista2[8] = objeGene.sumaVa9Afo
lista2[9] = objeGene.palp #palp
lista2[10] = objeGene.gastoAnyo #gasto anyo
lista2[11] = objeGene.ingrxkRBU
lista2[12] = objeGene.ingrxTrabB #ingrx Trabajo béase
lista2[13] = objeGene.plusProductividad #plus productividad

lista2[14] = objeGene.ingrxTrab #suma de los anteriores ingresos

39

lista2[15] = objeGene.ingrTotal if objeGene.ingrTotal != 0 else lista2[11] # ingrTotal =
ingrxTrab +ingrxkRBU

lista2[16] = objeGene.intencionalidad
lista2[17] = objeGene.idFiscalFamilia
lista2[18] = objeGene.dniPareja
lista2[19] = objeGene.idFiscalEmpresa

matriz3.insert(dni,tuple(lista2))

listad =]

forii in range (0,2): #inicializa lista4
lista4.append(0)

lista4[0] = objeGene.edad

lista4[1] = dni

matriz4.insert(dni,tuple(lista4))

print(‘Voy a grabar matriz1 de iteracionecon’)
sglupdat2="Update iteracionecon Set ultima='N' where dni=%s and tiempo=%s"
ph_herramientas.updateBD(sqglupdat2,matriz1)
print(‘Voy a grabar matriz2 de iteracion General')
sgl ="INSERT INTO iteracion (dni,tiempo, edad, actividad ,\
va0,va1lyva2,vag, va4, vab, va6, va7,va8,vag)\
VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s, %s,%s,%s)"
ph_herramientas.insertBD (sqgl,matriz2)
print('Voy a grabar matriz3 de iteracionecon’)

sgl ="INSERT INTO tercerbd.iteracionecon (dni,tiempo, edad,situlabo,antiguedad,
climLabo,ultima,sumava3,sumava9,palp,\

gastoanyo,ingrxRBU,ingrxTrabB,ingrxPlusP,ingrxTrab,ingrTotal,intenciona,idFiscalFamilia,i
dPareja,idFiscalEmpresa)\

VALUES (%s,%s, %s,%s,%s,%s,%s, %s,%s,%s,%s,
%s,%s,%s,%s,%s,%s,%s,%s,%s)"

ph_herramientas.insertBD (sql,matriz3)

print('Voy a grabar matriz4 de iteracion General')

40

sqlupdat4="Update nacer Set edad =%s where id=%s "

ph_herramientas.updateBD(sqlupdat4,matriz4)

return

def asignalntencionalidad(dni,edad):
#Asignay graba intencionalidad, en su caso, y GRABA sumaVa3 en ph().
asignalntencionalidad.llamadas +=1
#Intencionalidad y Palp definen el movimiento de un ph()
#en POO (parte declarativa del phy en su miDicPh) y en tabla nacer estd intencionalidad
#en la tabla iteracién en cada ph, en la fila 33
#lo llama iteracionGeneral, justo despues de llamar a ER_ED
def asignalnten(arquetipo,caracter,dni, suma,sumava9,edad):
objeGene=nombrePh.get(dni)
potencial = objeGene.potencial
#habria que variar tabla nacer, nacerPly reproducirse
argOscuFana = ['explorador’heroe'/gobernante’ rebelde'] #arquetipo
argDepresivo =['inocente''cuidador’ creador'] #arquetipo
ciResi =['1-Medio',2-Altos'/3-Malto'] #todos cinco char
caraF =['amorfo'apatico/flematico'] ,#caracter
caraBR =['apasionado’/sanguineo’/sentimentalcolerico'] #caracter
oF=False
depre=False
ciRe = False
inten="
#debo afinar mas
if arquetipo in arqOscuFana:
oF=True
if arquetipo in arqDepresivo:
depre=True

if (potencial in ciResi) or (caracter in caraBR):

41

ciRe =True
#la intencionalidad cambia de vez en cuando
if edad in [17,25,30,45,55,65]:
if (suma <=1 or sumava9 < 3) and oF:
inten='"Acabemos'
elif 2 <= suma < 20 or 4<= sumava9< 60 or depre:
inten='Busqueda’
elif suma >= 20 or ciRe or sumava9 >=60 or oF:
inten='Reforzar’
elif edad >= 65 and (suma >= 20 or sumava9 >= 60):
inten = 'Busqueda’
else:
#inten = objeGene.intencionalidad

inten = 'Flotar' if (random.randint (1,11) < 6) or (caracter in caraF) else 'Busqueda’

#Intencionaliodad esta en TRES lugares: Ph(), iteracionecon, nacer

#guardar en iteracién, va9=intencionalidad y va3--> suma de los indices de EXITO de
sus actividades

sql2="UPDATE tercerbd.iteracionecon SET sumava3=%s,sumava9=%s,intenciona=%s
Where dni=%s and edad=%s'

valor2=(sumaVa3,sumaVa9,inten,dniLocal,edadLocal)
ph_herramientas.updateUno(sql2,valor2)

#en POO

objeGene.intencionalidad = inten
#objeGene.sumaVa3Afo = sumaVa3 ya esta grabado

return inten

def Suma(dni,edad):

#suma va3 para las actividades activas de cada DNI por afio de edad.- entre ceroy
diez

42

#va3 es elindice de éxito de ese afio, de esa actividad activa: (va2/vad)*atractivo
personal

valorSuma = ()

sql1="select SUM(va3), SUM(va9) FROM tercerbd.iteracion where dni=%s and edad =
%Sll

valor1=(dni,edad)
valorSuma = ph_herramientas.selectBD(sql1,valor1)

return valorSuma[0][0] , valorSuma[0][1]

#He adaptado el procedimiento general a UN solo caso. Habré declaracionbes
redundantes...

#toma dniy edad

sumaVa3 =0

sumaVa9=0

dniLocal=dni #ecibes el parametro
edadlLocal=edad #ecibes el parametro

#se calcula la suma, por cada dni, de los indices de Exito, (va2/va4)*atractivopersonal,
de cada Actividad

resultado, resulVa9 = Suma(dniLocal,edad)
if resultado != None:
sumaVa3 = round(resultado,?2)
if resulVa9 != None:
sumaVa9 = round(resulVa9,2)
#debe dar UN valor

#Estructura dicSumas: {533: [(349.56, 69)],..,1588: [(2.8800000000000003, 9)], 1589:
[(2.79, 8)1}

objeGene = nombrePh.get(dniLocal)
objeGene.sumaVa3Ano = sumaVa3
objeGene.sumaVa9Ano = sumaVa9

arquetipo = objeGene.miDicPhBasi['arquetipo1']
caracter = objeGene.miDicPhBasi['caracter1']

if sumaVa3 != None:

43

asignalnten(arquetipo,caracter,dniLocal, sumaVa3,sumaVa9,edadLocal)

return

#INICIO SALIDAS

#FIN SALIDAS

#MAIN CODIGO

if _name__=='__main__"
ph_herramientas.insertBD.llamadas = asignalntencionalidad.llamadas = 0
historico ={} #se usaen sociedad()

poblCont ={} #contabilidad de nacimientosy muertes...
extincionSociedad=False

pibViejo=0

tiempo = 0 #tendera a duracionSimulacion

#Borrado DB MySQL

borrado()

#Presentacion. Archivo de voz

ph_pantallasES.preludiolraviata()

#Pantalla captacién datos iniciales
datoslniciales=ph_pantallasES.capturaDatoslIniciales()
duracionSimulacion=int(datoslniciales[0])
poblacionBegin=int(datoslniciales[1]) #poblacion Inicial. No cambia

pobl=int(datoslniciales[1]) #poblacion que varia a cada vualta; ahora tienen el mismo
valor

esperanzaEscolari=int(datoslniciales[2]) #para IDH. Esperanza afios de escolarizacién
anyosVidaMax = int(datoslniciales[3])

VM = anyosVidaMax - 18 #se utiliza en tabla Actividades y para asignar actividad en
campo DuraMax

cobranRBU = int(datoslniciales[4]) # 1 : la cobran todos; diferente de 1: solamente los >=
18

salarioMinimo = int(datoslniciales[5])

iAE = datoslniciales[6] #impuesto actividades econdmicas

44

iSP = datoslniciales[7] #iSP: importancia relativa del sector publico respecto del
privado.

#11400 es el coste INDIVIDUAL de las actividades asignadas a Pl ; Todos son mayores
de 18 afos: 25-40.-

rbuCapita = 11400 if cobranRBU == 1 else 0

pibCapita =11400 #Comida, hijos, descanso, vestido, amistad arrojaria un total de
11400 unidades monetarias : minimo a producir

pibNuevoSoc = pibCapita * poblacionBegin

#la sociedad, la comunidad, les provee de lo indispensable; menor de 14 anos: 1/3:3800
ingrxkRBUSoc = rbuCapita * poblacionBegin
#FIN datos iniciales pedidos a usuario o calculados x supuestos
#info tabla actividades en regActividades;acceso global
sqlselect="Select * from actividades where id<%s"
valorselect=(35,)

regActi = ph_herramientas.recuperarTablaActividades()

matrizLabo =[]
registroLabo = recuperarTablasitulaboposi()
for indice,item in enumerate(registroLabo):

matrizLabo.insert(indice,tuple(item))

diccDecisionGeneral = formaDiccDecisionGeneral(regActi)
#Tratamiento especial de Poblacion Inicial
nacerPl(poblacionBegin, regActi)

#graba en tabla nacery en miDicPh

atractivoPersonal() #graba en tabla nacery tabla atractivo personal
#necesito iniciar la tabla Sociedad para tiempo cero

pibNuevoSoc,iAE,iSP =
ph_sociedad.Sociedad(esperanzaEscolari,pibNuevoSoc,cobranRBU,ingrxRBUSoc,iAE,iSP,
tiempo,nombrePh,pobl,anyosVidaMax)

45

#la primer empresa

formaEmpresa()

foriinrange (1,duracionSimulacion+1):

if pobl >=50:

pAMuerte =0
tiempo =i
print('Tratamiento general del afio o iteracidn numero: | i)

#solo los vivos fallecido='N' cumplen anos, iteran

registro = ph_herramientas.recuperarRegistroSociedad(tiempo-1)

plusP = registro[21] #se toma la productividad GLOBAL (Soc) del ano anterior
plusP = int(plusP/pobl)

#cada ano forma una empresa (nada de Familia)

formaEmpresa()

pibViejo=pibNuevoSoc

nacidos = reproducirse() #Tb se forman Familias
muertos = muerte(tiempo)

pAMuerte = calderaDesastres(pobl,tiempo) #generacion de crisis,

pandemias...desastres.

pobl = pobl + nacidos - muertos -pAMuerte #poblacion de la iteracién

poblCont[i] =[pobl,nacidos,muertos,pAMuerte]

atractivoPersonal() #graba tabla atractivo personal

iteracionGeneral(plusP,matrizLabo) #asigna intencionalidad, llama a ER_ED

#sociedad llama a calculolDH, calculo Gini...magnitudes macroeconémicas

46

pibNuevoSoc,iAE,iSP =
ph_sociedad.Sociedad(esperanzaEscolari,pibNuevoSoc,cobranRBU,ingrxRBUSoc,iAE,iSP,
tiempo,nombrePh,pobl,anyosVidaMax)

#grabara resultados de iteracion N, que seran leidos por la N+1 and so on

datosReprPoblPib[i]=[pobl,nacidos,muertos,pibNuevoSoc]

else:
print(‘Tratamiento general del afo o iteracién numero(Sociedad EXTINGUIDA): i)

break

if pobl>=50:

ph_salidas.tratamientoDatos(nombrePh,
datosReprPoblPib,poblCont,poblacionBegin) # Todas las salidas agrupadas

ph_seleDist.main() #comparacion distribuciones Ingresos y Gastos. Algoritmo de
Amat

sinfo()
#session_info.show() #Creo NO funciona con spyder

miConexion.close()

print('llamadas aproximadas a
ph_herramientas.insertBD',ph_herramientas.insertBD.llamadas)

print('llamadas para asignar intencionalidad’,asignalntencionalidad.llamadas)
if pobl>=100:

print('La Sociedad se EXTINGUIO')
print('"HISTORICO Dif ingresos gastos en Organizacion, iAE e iSP----- >' historico)
print('Contabilidad de poblacién’,poblCont)

print ("Esta es la ultima instruccién")

47

-*- coding: utf-8 -*-
Created on 24/6/24

ERED debe ser el algoritmo por el que tomamos nuestras decisiones: hacemos estoy
dejamos de hacer aquello...

Son decisiones individuales que deben de tener en cuenta :

los deseos individuales, la situacion familiar, amistades, conocidos...y econdmica.-
Intencionalidad y palp

@author: invat

import random

import mysqgl.connector

import ph_herramientas

#Con los imports activos salia error debido a la circularidad

#Opte por eliminar estas importaciones y poner el cédigo -duplicandolo-

#Duplicado

miDicActividades={1:'Comer',2:'Pareja’,3:'Hijos'4:'Descanso'5:'Sex0',6:'Salud’,7:'Amistad,
8:'Estudio’,\

9:'Preparar oficio’,10:'Trabajo',11:'Vestirte,12:'Casa’,13:'Coche’,\
14:'Milit pol-sindi',15:'Deporte',16:'Adicciones’, 17:'Escribir leer',18:'Asac recreati',\

19:'Satis Curiosid',20:'Jugar Azar',21:'Familia‘,22:'Manualidades',23:'Militancia
ONG',24:"' Arte Ciencia',\

25:'Viajar Emigrar’, 26:'Seguir la moda',27:'Ejercer poder',28:'Investigar’,\

29:'Emprender',30:'Deporte riesgo',31:'Lider publico',32:'Espiritualidad’,33:'Estudios
medios',34:'Estudios superiores'}

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

def recuperarTablasitulaboposi():

#se cargan los 32 primeros registros de la tabla actividades

48

sqlselect="Select * from tercerbd.situlaboposi "
regActi = ph_herramientas.selectBDNoWhere(sqlselect)
regis = [list(a) for a in regActi]

return regis

#FIN duplicado

def
ERealEDeseo(dni,edad,nombrePh,salarioMinimo,cobranRBU,rbuCapita,plusP,tiempo,pob
l,diccDecisionGeneral,matrizL,objeGene):

#ph_ER_ED.llamadas +=1

#ER-ED trabaja con su codey con sus funciones internas

#paso de variables y funcion del return: normal

#recuerda: las variables de la funcién externa pueden ser consultadas en las internas

#en funciones internas pueden modificar variables externas si usas:'nonlocal’

#Actividades por edad

def actividadesMenor18():

#en miDicPh lo que estd escrito se mantiene, estd en RAM
#en iterGrabalocal esta en MySQL, se ha de grabar cada iteracion

numActi=[15,17,19,20,26]

if 11 <=edad <=15:
#deja miDicPh , afiadiendo de 1 a 3 voluntarias no Maslow
foriinrange (1,3):
ii=0
azarO=random.randint(0,4) # 0 a 4 ,inclusive
#listas, tuplas...comienzan con CERO

#15 depporte, 19 curiosidad, 20 jugar, 17 escribir leer,26 seguir moda

49

ii = numActi[azar0]

if ((regActividadesJii-1][10] in miAC) or (regActividadeslii-1][11] in miAC)):
cargarActiDat1245(dni,ii)
elif edad >15:

decisionUnidades(diccDecisionGeneral,Deporte’)

return

def actividadesMayor17Menor65():
#la 1,4,6,7,8,9,11 YA estan escritas en el diccionario
#el trabajo Se incluye APARTE
#decisiones: es decir no estan puestos de serie al nacer
#decidirSobre podia ser muyyyyy largo

#A los que en reproducir se les ha puesto un idFiscalFamilia se les pone en actividad
Familia. Manu militari

if objeGene.idFiscalFamilia !=0:
try:
cargarActiDat1245(dni,21)
except KeyError:

print('Ya estaba dada de alta la actividad')

decidirSobre = {2:'Pareja’,3:'Hijos', 12:'Casa’,\
13:'Coche'15:'Deporte' }

dictPh = objeGene.miDicPh

#extrae los que estan en decisirSobre y no estan en miDicPh

dict3 = set(decidirSobre) - (set(dictPh))

dict4 ={}

foritemin dict3:

50

valor = decidirSobre[item]
dict4[item] = valor
decisionUnidades(diccDecisionGeneral,valor)

#Ahora de los que estan en decidirSobre y tambien estan en miDicPh: se envian a
control

dict3 = set(decidirSobre) & set(dictPh)
foritem in dict3:
valor = decidirSobre[item]
dict4[item] = valor

controlUnidades(item)

if edad ==25 or edad ==35 or edad == 45 or edad == 55:
#va a intentar afiadir alguna actividad, tres veces: maximo 9 actividades
foriinrange (1,5): #vueltas:1,2,3,4

azarO=random.randint(14,34) #apuede salir el 14 e intermedios hasta el 34,
inclusive.-

foriiinrange (azar0,35): #llegaa 31-del0al 31 van 32
if (regActividadesJii-1][10] in miAC) or (regActividades[ii-1][11] in miAC):
if ii not in objeGene.miDicPh:
i =ii #num actividad
cargarActiDat1245(dni,i)
continue #para salirse del for

return

def actividadesMayor64():
if edad>=65:
if 2 notin objeGene.miDicPh:
decisionUnidades(diccDecisionGeneral, Pareja’)
if 15 not in objeGene.miDicPh:
decisionUnidades(diccDecisionGeneral,Deporte’)

if 25 not in objeGene.miDicPh:

51

decisionUnidades(diccDecisionGeneral,Viajar Emigrar’)
decisionDistribuyeTuTiempo()

return

#herramientas de ayuda y control actividades
def cargarActiDat1245(objDni,numActi):
#DAR DE ALTA UNA ACTIVIDAD -numActi- EN miDicPh() del ph(objDni)
objeGene=nombrePh.get(objDni)
i = numActi
#actvidades que tienen 0 en coste de tiempo

regActividadesli-1][5] = random.randint(8,25) if regActividadesl[i-1][5] == 0 else
regActividadesl[i-1][5]

objeGene.miDicPh[i] =['X}0,0,0,0,0,0,0,0,0]
objeGene.miDicPh[i][0]=regActividades[i-1][1] #nombre Actividad
objeGene.miDicPh[i][1]=regActividades][i-1][4] #coste um
objeGene.miDicPh[i][4]=regActividades][i-1][5] #coste tiempo

objeGene.miDicPh[i][7]=regActividades][i-1][2] #riesgo actividad

return

def actividadesxArquetipo(arqueti):
#nonlocal miDicPh y nonlocal iterGrabalocal, no necesario

#Aunque viene todas las iteraciones, solo se asigna UNA vez

diccioArquet={"amigo':[7,16],cuidador':[23] /explorador':[25] /heroe':[15,30] ,\
'inocente':[26] ,rebelde':[14] ,'sabio': [19],gobernante':[27,31],\

'creador':[17,24,28] /bufon':[18],mago":[8,29],amante":[5]}

sumakExtra ={'amigo":[5], cuidador':[7] ,explorador':[7] /heroe':[8] ,;amante':[2],\
'inocente':[5] /rebelde’:[5] /sabio': [10],gobernante":[5],\

'‘creador':[8] ,bufon':[2],mago':[7] }

52

arquetipo = arqueti

if edad==10oredad ==18:
try:
for item in diccioArquet[arquetipo]:
i =item #si hay dos o0 3 items, solo se toma el primero

cargarActiDat1245(dni,i)

objeGene.miDicPh[i][3] += sumaExtra[arquetipo][0] #indice éxito Deporte

except KeyError:
pass

return

def actualizaContadores():

#en objeGene esta el ph CONCRETO en cada iteracion
#afade un ano de practica a las Actividades activas que no sean 2,5

#Indice de éxito de cada Actividad (antes trae el indice atractivo personal)

excepciones=[2,5] #pareja y sexo: tienen azar.

estadoslnactivos=['X,N']

atracPerso={1:0,2:0,3:0,4:0,5:0,6:0,7:0, 8:0,9:0,10:0,11:0,\
12:0,13:0,14:0,15:0,16:0, 17:0,18:0,19:0,20:0,\
21:0,22:0,23:0,24:0,25:0,26:0,27:0,28:0,29:0,30:0,31:0,32:0}

#en este diccionario debe meterse indice atractivoPersonal de cada ph
sgl1="'select actividad, atractivo from atractivopersonal where dni=%s'
valor1=(dni,)
registro1=ph_herramientas.selectBD(sql1,valor1) #da LISTA de TUPLAS
#pasar tuplas a diccionario
foriinrange(1, 35): # uno mas: son 34 significativas

atracPersoli] = registro1[i-1][1] #

foriin objeGene.miDicPh.keys(): #itera actividades activas

53

if i notin excepciones:
if objeGene.miDicPh[i][0] notin estadosInactivos:
objeGene.miDicPh[i][2] +=1
numerador = int(objeGene.miDicPh[i][2]) #va2
try:
indiceExito de cada Actividad (menos las tres excluidas)
if numerador >= objeGene.miDicPhli][4]:

objeGene.miDicPh[i][4] = numerador #cociente sera la unidad; intenta evitar
efecto de Actividades con va2 "raro"

objeGene.miDicPh[i][3] =
round(numerador/objeGene.miDicPh[i][4],2)*(atracPerso[i])

except ZeroDivisionError:
print("No se ha podido realizar la divisidon pues va4 es nulo")
objeGene.miDicPh[i][6] += 1 #para indice eficacia

numerad = int(objeGene.miDicPhli][6]) #va5 max deseado, va6 logrado indice
eficacia: va6/vab * atracPerso

try:
indiceEficacia de cada Actividad (menos las tres excluidas)
if numerad >= objeGene.miDicPhl[i][5]:

objeGene.miDicPh[i][5] = numerad #cociente sera la unidad; intenta evitar
efecto de Actividades conva5=0

objeGene.miDicPhl[i][9] =
round(numerad/objeGene.miDicPh[i][5],2)*(atracPerso[i])

except ZeroDivisionError:
print("No se ha podido realizar la divisidn pues va5 es nulo")

return

def experienciasActividades():
#en objeGene esta el ph CONCRETO
#Van afiadirse actividades TIPO: Optativas
#excepciones=[1,2,3,4,5,6,7,8,9,10,11,12,13,21,] #Son TIPO = basicas o normales

#actividadesPosiblesUnidades
=[2,3,5,7,9,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32] #25
actividades

54

posiblesActividades=[14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34]
estadoslnactivos=['X,N']
los estadoslnactivos son ['X,N']
#elimino actividad con poco indiceExito de la actividad
nombrePhClavesCongeladas =[]
nombrePhClavesCongeladas = list(objeGene.miDicPh)
foriin nombrePhClavesCongeladas :
if objeGene.miDicPhli][0] not in estadoslInactivos:

if i in posiblesActividades and (objeGene.miDicPh[i][3] < 0.3 or
objeGene.miDicPh[i][9] < 0.3): #indiceExito o indiceEficacia bajo

print("HE QUITADO',0bjeGene.miDicPhl[i][0])
objeGene.miDicPh[i][0] ='N' #hiciste esta actividad
i=i
#eliminaste una Actividad, intentamos asignarte otra por tres veces
#todas las incluidas como posibles estan en tipo: Optativas
dentro=True
vez=0
while dentro and vez < 4:

azarO=random.randint(14,31)

vez +=1

if (azar0O in posiblesActividades) and (ii != azar0): # asegura que la actividad
quitada se vuelva a poner, creo

i = azar0 #num actividad
cargarActiDat1245(dni,i)

dentro = False

print('HE ANADIDO', objeGene.miDicPh([i][0])

return

def decisionUnidades(diccDecisionGeneral,deciSobre):

#deciSobre debe ser del tipo: 'pareja’, 'hijos'..

55

#X: No se estd ejecutando, N: se ejecutd ,pero ahora no.- Si tiene nombre actividad: se
esta ejecutando

#si asigna es menor: se queda como estuviera

#tdecisionGeneral [actividad, azarMayorq,azarUnidad: num de unidades max a que se
aspira]

#actividadesPosiblesUnidades
=[2,3,9,12,13,14,15,16,18,20,22,23,24,26,28,29,30,31,32]

#Pde cada actividad posible tomamos su nombre, su nimero,el numero que debe
superarse, num maximo unidades, la duracién antes de ser obsoleto

#se toma de la tabla actividades y se mete en el diccionario: decisionGeneral

#decisionGeneral =
{'Pareja':[2,6,10],Hijos":[3,1,10],Sex0"[5,3,2],Casas":[12,4,4],Coches'[13,1,3],\

'Familia":[21,6,1],Viajar':[25,1,1]}

decisionGeneral = diccDecisionGeneral

actividad = decisionGeneral[deciSobre][0]
azarMayorq = decisionGeneral[deciSobre][1]
azarUnidad = decisionGeneral[deciSobre][2]
obsolescencia = decisionGeneral[deciSobre][3]
asigna=random.randint(1,9)
if asigna > azarMayorq:
i = actividad #num actividad
cargarActiDat1245(dni,i)
objeGene.miDicPh[actividad][0]=miDicActividades[actividad]
if azarUnidad !=1:
azar = random.randint(1,azarUnidad)
if actividad == 3 or actividad == 12 or actividad == 13:
objeGene.miDicPh[actividad][5]=azar #vab)
else:
objeGene.miDicPh[actividad][4]=azar #va4)

return

def decisionDistribuyeTuTiempo():

56

#Indicar que es una forma de proceder. Puede ampliarse
azar=random.randint(0,5)
if azar>2:
i =22 #num actividad #manuealidades
cargarActiDat1245(dni,i)
i =18 #num actividad #asoc recreativas
cargarActiDat1245(dni,i)

return

def controlUnidades(actividad):
#hijos,casas,coches,ochomiles...Unidades.- V(-9.1)
#Si cumplen objetivo, escribe N; si aln no lo cumple= suma una Unidad
i = actividad
deseadas = objeGene.miDicPhli][5]
habidas = objeGene.miDicPhli][6]
diferencia = deseadas-habidas
if diferencia>0:
objeGene.miDicPh[i][6] += 1 #vafhade una unidad
else:
objeGene.miDicPh[i][0] ='N'# 'N': ya han tenido las Unidades que deseaban

return

def controlCambioEmpresa():
#no me caliento la cabeza
#miDicPh[10][6] ahi debe estar el num de afos que lleva en la empresa
cambia=random.randint(1,9)
miAntiguedad = int(objeGene.miDicPh[10][6])
antiguedadMediaEmpresa=10
if antiguedadMediaEmpresa > miAntiguedad :

objeGene.miDicPh[10][6] = miAntiguedad + 1

#Sigue en la empresa

57

elif antiguedadMediaEmpresa <= miAntiguedad and cambia <6:
objeGene.miDicPh[10][6] = miAntiguedad + 1
#Sigue en la empresa

elif antiguedadMediaEmpresa <= miAntiguedad and cambia >=6:
#cambia de empresa
baja_Empresa()
altaEmpl_Empr()

return

def independizarse():
#los hijos pueden formar otra familia
sql="UPDATE organiza_miembros SET esBaja = 'S' where id_nacer=%s"
valor=(dni,)
ph_herramientas.updateUno(sql,valor)

return

#temas de TRABAJO
def asignalrabajo(edad,riesTole,dni,rbuCapita,plusP,matrizLabo):
#NO paso objeGene pues es funcién interna

#segun antiguedad cambia trabajo y asigna cuantias segun tabla empleosy
situaciones

def rutina1(PlusP,azar,rbuCap):
azarCuan = azar
PlusP = PlusP
rbuCapita = rbuCap
objeGene.climLabo ='Regul’ #a modificar

objeGene.antiguedad =1 if (objeGene.antiguedad == 0 or objeGene.antiguedad ==
9) else objeGene.antiguedad + 1

if objeGene.antiguedad == 1 or objeGene.antiguedad == 9 : #Si tiene 1: instruccion
anterior era cero

azarProf = random.randint(7,206)

#en tabla va de 8 a 207, pero en lista va de 0-206: matriz[6][0]=7 (S-dificil)

58

#Si es S-dificil alto salario
if objeGene.situlaboposi==7:
objeGene.ingrxTrabB = int(matriz[7][2])
elif objeGene.situlaboposi!=7:
azarProf = random.randint(7,206)
if (objeGene.antiguedad == 1 or objeGene.antiguedad ==9):
objeGene.ingrxTrabB = int(matriz[azarProf][2]/azarCuan)
objeGene.situlaboposi = matriz[azarProf][0]
elif 2 <= objeGene.antiguedad < 9:
objeGene.ingrxTrabB = objeGene.ingrxTrabB

objeGene.plusProductividad = PlusP + (PlusP/random.randint(8,10)) -
(PlusP/random.randint(5,10)) \

if objeGene.plusProductividad < objeGene.ingrxTrabB else
objeGene.ingrxTrabB/10

objeGene.ingrxTrab = objeGene.ingrxTrabB + objeGene.plusProductividad
objeGene.ingrxRBU = rbuCapita
objeGene.ingrTotal = objeGene.ingrxTrab + objeGene.ingrxRBU
return
def rutina2():
objeGene.ingrxTrab = objeGene.ingrxTrabB + objeGene.plusProductividad
objeGene.ingrxRBU = rbuCapita
objeGene.ingrTotal = objeGene.ingrxTrab + objeGene.ingrxRBU

return

#MAIN asignaTrabajo()

edad = edad

rbuCapita = rbuCapita if edad >= 14 else (rbuCapita/3)
riesgo=riesTole

riesgoBajo=(0,1,2,3)

riesgoAlto=(4,5)

PlusP = plusP

matriz = matrizLabo

59

azar=random.randint(1,9) #1y 9 incluidos
if 1 <=edad <18:
objeGene.ingrxTrabB =0
objeGene.plusProductividad =0
rutina2()

objeGene.situlaboposi=1if edad < 14 else 2

elif 18 <=edad <65 and riesgo in riesgoBajo :
if 18 <= edad < 25:
azarCuan = random.randint(5,6)

rutinal1(PlusP,azarCuan,rbuCapita)

elif 25 <= edad <32:
azarCuan = random.randint(4,5)

rutina1(PlusP,azarCuan,rbuCapita)

elif 32 <= edad <40:
azarCuan = random.randint(3,5)

rutina1(PlusP,azarCuan,rbuCapita)

elif 40 <= edad <50:
azarCuan =random.randint(2,4)

rutina1(PlusP,azarCuan,rbuCapita)

elif 50<=edad < 65:
azarCuan =random.randint(1,3)

rutina1(PlusP,azarCuan,rbuCapita)

elif 18 <=edad <65 and riesgo in riesgoAlto :
if azar<7:

azarCuan = random.randint(1,4)

60

rutina1(PlusP,azarCuan,rbuCapita)
elif 7==azar==8:
#Casos raro:enfermedad cronica, accidente laboral...
azarCuan =random.randint(4,5)
objeGene.ingrxTrabB = int(matriz[5][2]/azarCuan)
objeGene.plusProductividad =0
rutina2()
objeGene.situlaboposi =5
objeGene.antiguedad = 0 #infancia y jubilados no cuenta la antiguedad
elif azar ==9 and objeGene.intencionalidad=='acabemos':
objeGene.ingrxTrabB =0
objeGene.plusProductividad =0
rutina2()
objeGene.situlaboposi = 4 #situacién que impide trabajar
objeGene.antiguedad = 0 #infancia, oscuros y jubilados no cuenta la antiguedad
elif edad>=65: #debes crear los IMPUESTOS, no todos pueden tener la contributiva
#le toca por edad, pero ¢y si es NO contributiva?
azarCuan =random.randint(1,3)
objeGene.ingrxTrabB = int(matriz[5][2]/azarCuan)
objeGene.plusProductividad =0
rutina2()
objeGene.situlaboposi=5

objeGene.antiguedad = 0 #infancia y jubilados no cuenta la antiguedad

return

def asignaTrabajoSDificil():
#edad,riesTole y otras externas las pilla por eso mismo: son externas y puede leerlas
#Creo que objeGene es conocido cada este dni
trabajoAsignado="

actividad=""

61

azar=random.randint(0,13) #ambos inclusive

actividadSdificil=(5,10,14,15,17,23,24,27,28,29,30,31,32,34)

tablaACSdificil=('creador’,cuidador'sentimental,heroe’/rebelde’/gobernante,mago’apasi
onado'/flematico'/sanguineo'amante’)

#tcolerico no estd...hay muchos....Estos son los arquetipos que pueden dar lugas a S-
dificil

ruleta=azar #elige la actividad S-dificil que se va a chequear: solamente una

i = actividadSdificil[ruleta]

check=regActividades[i-1][10]

#si check esta en las dos listas

if objeGene.situlaboposi ==7 and 0 < objeGene.antiguedad < 8:
pass

elif objeGene.situlaboposi == 7 and 0 < objeGene.antiguedad == 8:
objeGene.situlaboposi = 3 #se va al paro
objeGene.antiguedad =1
return

#elif ((check in tablaACSdificil) and (check in miAC) and (riesTole >= regActividades][i-
1][2] or objeGene.potencial == '3-Malto")) :

elif (check in tablaACSdificil and objeGene.potencial =='3-Malto’) :
trabajoAsignado ='S-dificil'
actividad = regActividades[i-1][1]
objeGene.situlaboposi =7 # es la clave de S-Dificil en la tabla situlaboposi
objeGene.antiguedad =1

else:
pass

return trabajoAsignado, i,actividad

def altaEmpl_Empr():

62

#Por un doble random mete al trabajador en una empresa Sl no esta activo en alguna,
es decir esBaja ='S' o es la PRIMERA

sql ="Select count(*) from organiza_miembros where id_nacer = %s and esBaja = 'N""
valor = (dni,)
existeEmpr = ph_herramientas.selectBD(sql,valor) #count deberia ser cero 6 uno

if existeEmpr[0][0] == 0 : #no tiene empresa activa; si >>0, entonces tiene empresa:
control

dentro=True
while dentro:
tipo = ['industria’/servicios,campo’/ensefianza’/sanidad’\
'software!/seguridadinvestigacion'/finanzas'/administracion']
azar = random.randint(0,9)
tipo_Empresa = tipo[azar]
sql="SELECT dniFiscal from organizaciones where tipo=%s"
valor=(tipo_Empresa,)
empresas_posibles = ph_herramientas.selectBD(sqgl,valor)
limite = len(empresas_posibles)
if limite >=1:
dentro = False
azar_empresa = random.randint(0,limite)
idFiscal_Empr =empresas_posibles[azar_empresa-1][0]
sql="INSERT INTO organiza_miembros (idFiscal,id_nacer,tipo) VALUES (%s,%s,%s)"
valor = (idFiscal_Empr, dni,tipo_Empresa)
ph_herramientas.insertUno(sql,valor)
objeGene.idFiscalEmpresa=idFiscal_Empr #ya es distinto de cero; empresa actual

return

def baja_Empresa():
idBaja = objeGene.idFiscalEmpresa
idDni = objeGene.dni

sql1 ="UPDATE organiza_miembros SET esBaja ='S' WHERE idFiscal=%s and
id_nacer= %s and esBaja="'N"

63

valor1=(idBaja,idDni)
ph_herramientas.updateUno(sql1,valor1)

return

#Economia Individual

def formaGasto():
#acumula todos los gastos de todas las actividades del afio
gastoAnyo=0
convenciones=('X,N') #he quitado S-dificil
foriiin objeGene.miDicPh:
if objeGene.miDicPhlii][0] not in convenciones:
gastoAnyo=gastoAnyo+objeGene.miDicPh[ii][1]
gastoAnyo=int(gastoAnyo)

return gastoAnyo

#(MAIN de ER_ED)

#Se llama por CADA ph seleccionado, desde edad General
dni=dni

edad = edad

plusP = plusP

tiempo =tiempo

#decisionGeneral = diccDecisionGeneral

miAC =[]

arquetipo ="

regActivi = ph_herramientas.recuperarTablaActividades() #no tiene sentido recuperarla
1000 veces

regActividades = [list(a) for a in regActivi]
matrizLabo = matrizL

objeGene = objeGene

64

#grabo en el ph de POO la edad

objeGene.iteracion = tiempo # tiempo es la iteracion
dni = objeGene.dni

edad = objeGene.edad

#los dos arquetipos y los dos caracteres
miAC.append(objeGene.miDicPhBasi['arquetipo1'])
miAC.append(objeGene.miDicPhBasi['arquetipo2'])
miAC.append(objeGene.miDicPhBasi['caracter1'])

miAC.append(objeGene.miDicPhBasi['caracter2'])

riesTole = objeGene.riesgololerancia
#fallecido=objeGene.riesgololerancia

arquetipo = miAC[0] #le pasa arquetipo1 al actividadesxArquetipo

if 1 <=edad <18:

actividadesxArquetipo(arquetipo) #todos los anos para que sume a lo
actualizacionContadores

actividadesMenor18()

elif 18 <= edad < 65:
altaEmpl_Empr() if objeGene.idFiscalEmpresa == 0 else controlCambioEmpresa()
actividadesxArquetipo(arquetipo)

#mira los indices de exito de algunas actividades y deja los mayores, elimina los <5 e
intenta asignar

experienciasActividades()
actividadesMayor17Menor65()
elif edad>=65:
experienciasActividades()
actividadesMayor64()

if 18 <= edad <65 and objeGene.potencial =="'3-Malto' and objeGene.situlaboposi !=7:

65

asignalrabajoSDificil() #se asigna por actividades; una via diferente al trabajo. Si se le
asigna: en def rutinal1() se contempla

asignalrabajo(edad,riesTole,dni,rbuCapita,plusP,matrizLabo) #asigna tb ciudadaniay
jubilacion

#objeGene concreto: actualizo contadores miDicPh (va3):en Actividades activas

actualizaContadores()

#todo es relativo al individuo, al ph() en curso

#ingresoRBU = ingresoxCiudadania() #deberia estar fuera de este modulo, como una
asignacioén segun el afno anterior

#ingrxTrabB,ingrxTrab,ingresoPlusP = ingresoxTrabajo(trabajo)
ingrTotal = objeGene.ingrTotal #
gastoAnyo = formaGasto()

objeGene.palp = objeGene.palp + int(ingrTotal)-int(gastoAnyo) #NO Considera
ACTIVOS...es el AHORRO ACUMULADO

objeGene.gastoAnyo = gastoAnyo # caractwer anual

return

#FIN DE ER_ED

66

-*- coding: utf-8 -*-
Created on Sadbado 24/06/2024
ph_pantallasES.py
HOSS (Human Organizations Simulation Start) -9
José Quintas Alonso
@author: invat
import tkinter as tk
from tkinter import messagebox
from tkinter import Label, Frame, Entry, Button,Text,INSERT
from playsound import playsound
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import matplotlib.pyplot as plt
import os
import webbrowser

from PIL import Image,ImageTk

datoslIniciales=[]

datosSalida=[]

def preludioTraviata():
#utilizando Tkinter Preludio de la aplicacion, esplicar, acceder a Internet
raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="'yellow')

raiz.title('Simulacién de una Sociedad de ph(). Versién -7')

#Frame

67

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="200",height="100")

def playMp1():

playsound('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python ph-
7/2.mp3')

def playMp4():
#aqui ira la direcciéon de Onuglobal

webbrowser.open(‘https://onuglobal.files.wordpress.com/2023/10/hoss16102023-
1.mp4’)

def playMp3():

playsound('https://onuglobal.files.wordpress.com/2023/10/hoss.mp3')

def linkBotonGauss():

webbrowser.open(‘https://www.geogebra.org/m/Wbb6Sk5C')

def linkBotonGamma():

webbrowser.open(‘https://www.geogebra.org/m/yCZgR3dh')

def funcionBotonSS():

raiz.destroy()

img = Image.open('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python
ph-7/altavoz.jpg')

img =img.resize((50, 50))

68

img = ImageTk.Photolmage(img)

playMp1_button = Button(miframe,image=img, text="Audio
explicativo",command=playMp1)

playMp1_button.pack()

playMp1_button.pack()

playMp1_text = tk.Label (miframe,text="Audio explicativo V: -7")
playMp1_text.pack()

playMp4_button = Button(raiz, text="Ver post y video descriptivo de HOSS V:-10",
command=playMp4)

playMp4_button.pack(pady=>5)
playMp3_button = Button(raiz, text="Agradecimientos", command=playMp3)
playMp3_button.pack(pady=>5)

botonMostrar=Button(raiz,text="Click para ir a Internet: distribucién
Gauss",command=LlinkBotonGauss)

botonMostrar.pack()

botonURL=Button(raiz,text="Click para ir a Internet: funcioén
Gamma'",command=linkBotonGamma)

botonURL.pack()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)
botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

return

def capturaDatoslniciales():
#Datos iniciales pedidos al usuario
def verificar_numeros():
numero1 =int(entry_numero1.get())

numero2 = int(entry_numero2.get())

69

numero3 = int(entry_numero3.get())

numero? = int(entry_numero7.get())
numero8 = int(entry_numero8.get())
numero9 = int(entry_numero9.get())
numero10 = int(entry_numero10.get())

numero11 = float(entry_numero11.get())

if 25 <= numero1 <= 200 and 25 <= numero2 <=2000 and 10<= numero3 <= 20\

and 60<=numero?7 <=85 and (numero8 ==0 or numero8 == 1) and 500<= numero9
<=3001 and \

10 <= numero10 <=50 and 0.001 <= nhumero11 <=1000:
messagebox.showinfo("Validacién exitosa", "iLas entradas son validos!")
btn_salir["state"] = tk. NORMAL

else:

messagebox.showerror("Error de validacién", "jLas entradas no cumplen con los
requisitos!")

def salir():
#Pongo los Entryes en la lista datoslniciales
datoslniciales.append(entry_numero1.get()) #posicion cero
datoslniciales.append(entry_numero2.get())

datoslniciales.append(entry_numero3.get())

datoslniciales.append(entry_numero7.get()) #posicion 6
datoslniciales.append(entry_numero8.get()) #posicion 7
datoslniciales.append(entry_numero9.get()) #posicion 8
datoslniciales.append(entry_numero10.get()) #posicion 9
datoslniciales.append(entry_numero11.get()) #posicion 10

ventana.destroy() #salir

Crear la ventana principal

70

ventana = tk.Tk()
ventana.title("Validaciéon de numeros")

ventana.geometry("800x800")

label_numero0 = tk.Label(ventana, text = "Introducir numeros, validar, introducir Datos y
Salir")

label_numero0.pack()

label_numero00 = tk.Label(ventana, text = "Los valores de 'sociedad' deberian de
obtenerse del desarrollo tecnologico, organizativo y del capital disponible")

label_numero00.pack()
Etiqueta y campo de entrada para el primer numero

label_numero1 =tk.Label(ventana, text = "Dos Datos necesarios para ejecutar la
aplicacién"))

label_numero1.pack()

label_numero1 =tk.Label(ventana, text="NUmero de afios simulacién (25-200) :")
label_numero1.pack()

entry_numero1 = tk.Entry(ventana)

entry_numero1.pack()

Etiqueta y campo de entrada para el segundo nimero
label_numero2 = tk.Label(ventana, text="Poblacién inicial (25-2000) :")
label_numero2.pack()

entry_numero2 = tk.Entry(ventana)

entry_numero2.pack()

Etiqueta y campo de entrada para el tercer niumero

label_numero3 = tk.Label(ventana, text = "DATOS INICIALES")
label_numero3.pack()

label_numero3 = tk.Label(ventana, text="Anos escolarizacién (10-20) -sociedad:")
label_numero3.pack()

entry_numero3 = tk.Entry(ventana)

entry_numero3.pack()

71

Etiqueta y campo de entrada para el cuarto nimero

Etiqueta y campo de entrada para el quinto numero

Etiqueta y campo de entrada para el sexto nimero

Etiqueta y campo de entrada para el septimo nimero

label_numero7 = tk.Label(ventana, text="Afos medios de Vida (60-85) -sociedad:")
label_numero7.pack()

entry_numero7 = tk.Entry(ventana)

entry_numero7.pack()

Etiqueta y campo de entrada para el octavo numero

label_numero8 = tk.Label(ventana, text="Reciben RBU: Nadie (0), Todos(1)-sociedad:")
label_numero8.pack()

entry_numero8 = tk.Entry(ventana)

entry_numero8.pack()

Etiqueta y campo de entrada para el noveno nimero

label_numero9 = tk.Label(ventana, text="Salario minimo (500-3001) -sociedad:")
label_numero9.pack()

entry_numero9 = tk.Entry(ventana)

entry_numero9.pack()

Etiqueta y campo de entrada para el décimo nimero

label_numero10 = tk.Label(ventana, text="Impuesto Actividades Econémicas (10-50) -
sociedad:") #iAE

label_numero10.pack()

72

entry_numero10 = tk.Entry(ventana)

entry_numero10.pack()

Etiqueta y campo de entrada para el undécimo nimero

label_numero11 = tk.Label(ventana, text="Masa monetaria sector Privado/Masa
monetaria sector Sector Publico igual a: 0,001-1000) -sociedad:") #iSP

label_numero11.pack()
entry_numero11 = tk.Entry(ventana)

entry_numero11.pack()

Boton para verificar los niumeros
boton_verificar = tk.Button(ventana, text="Verificar", command=verificar_numeros)

boton_verificar.pack()

btn_salir = tk.Button(ventana, text="Salir", command=salir, state=tk.DISABLED)

btn_salir.pack()

ventana.mainloop() #esta en un bucle ejecutandose
#debe ser la ultima instruccion

return datoslniciales

def capturaDatosSalida():
#utilizando Tkinter, tomo dos datos (afio de inicio y poblacidn inicial)
#Se los paso a los siguientes procedimientos
#podrian ampliarse los campos que se piden, habria mas parametros de DISENO
raiz=tk.Tk() #creo una variable

raiz.geometry("700x400")

73

raiz.config(bg="yellow')

raiz.title('Simulacion Sociedad. Version -1')
miVariable=tk.StringVar() #los parentesis, fundamentales
#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar

miframe.config(bg="red")
#miframe.config(width="1300"height="700")
miframe.propagate(0)

miframe.config(width="650",height="350")

instFrame=Frame() #Frame de instrucciones
instFrame.pack() #empaquetar
instFrame.config(bg="blue")
#miframe.config(width="1300"height="700")
instFrame.propagate(0)
instFrame.config(width="650",height="350")
#witges text y button, nuestro objetivo
miLabelText=Label(instFrame, text="Consideraciones")
miLabelText.grid(row=0,column=0)
miEntryText=Text(instFrame,width=60,height=3)
miEntryText.grid(row=1,column=0)

miEntryText.insert(INSERT,"'Se ejecutan TODAS las opciones")

miLabelA=Label(miframe, text="Elija un 'ph' valido para conocer su estado a través de
la impresora")

miLabelA.grid(row=1,column=0,sticky="e",padx=15,pady=15)
miEntryPh=Entry(miframe,textvariable=miVariable)

miEntryPh.grid(row=1,column=1)

74

miLabelB=Label(miframe, text="Elija un 'ph' valido para conocer su ultimo estado de
Actividades")

milLabelB.grid(row=2,column=0,sticky="e",padx=15,pady=15)
miEntryHijo=Entry(miframe)

miEntryHijo.grid(row=2,column=1)

miLabelC=Label(miframe, text="Para un afio concreto, ¢cual es el palp de los vivos?")

miLabelC.grid(row=3,column=0,sticky="e",padx=15,pady=15)
miEntryPalp=Entry(miframe)

miEntryPalp.grid(row=3,column=1)

miLabelD=Label(miframe, text="Para un 'ph, ;cual es su espacio de fases?")
milLabelD.grid(row=4,column=0,sticky="e",padx=15,pady=15)
miEntryEspaFase=Entry(miframe)

miEntryEspaFase.grid(row=4,column=1)

def funcionBotonMS():
#Pongo los Entryes en la lista datoslniciales
messagebox.showinfo("Estado de:", miEntryPh.get() +">>Actividades de:>>"\

+miEntryHijo.get()+">> Palp del ano:>>"+miEntryPalp.get())

datosSalida.append(miEntryPh.get())
datosSalida.append(miEntryHijo.get())
datosSalida.append(miEntryPalp.get())
datosSalida.append(miEntryEspaFase.get())

def funcionBotonSS():

raiz.destroy()

botonMostrar=Button(raiz,text="Introducir Datos",command=funcionBotonMS)
botonMostrar.pack()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

75

raiz.mainloop() #esta en un bucle ejecutandose
#debe ser la ultima instruccién

return datosSalida

def representarPobl(representar,poblB):
#Datos
poblacionBegin = poblB
datosDic=representar

xY1.Y2,Y3YA=[],[LILILI]

foriin datosDic:
#x and y must have same first dimension,
x.append(i) #en i estan las keys, que son enteros
Y1.append(datosDicli][0])
Y2.append(datosDicli][1])
Y3.append(datosDic[i][2])

Y4.append(datosDic[i][3])

eje_x=list(x)

Y1=list(Y1)

Y2=list(Y2)

Y3=list(Y3)

Y4=list(Y4)

#crea un objeto fig de la clase Figure y de él se crean 4 instancias diferentes
fig=plt.figure()

#primer dibujo-ax1-, de 2 fila(2) y dos columnas(2), colocado el primero(1)
ax1=fig.add_subplot(2,2,1)

ax1.plot(eje_x,Y1)

plt.ylabel('Poblacién’)

#segundo dibujo-ax2-, de dos fila(2) y dos columnas(2), colocado el segundo(2)

76

ax2=fig.add_subplot(2,2,2)

ax2.plot(eje_x,Y2)

plt.ylabel('Nacidos')

tercer dibujo-ax2-, de dos fila(2) y dos columnas(2), colocado el tercero(3)
ax3=fig.add_subplot(2,2,3)

ax3.plot(eje_x,Y3)

plt.ylabel('Fallecidos')

#4° dibujo

ax4=fig.add_subplot(2,2,4)

ax4.plot(eje_x,Y4)

plt.ylabel('Fallecidos x desastres')

#mostrar

plt.show

#imprime fichero
poblacion,nacidos,muertos,muertosAP=0,0,0,0
#tomo datos de la aplicacién ph()
fichero=open('Variaciones_poblacion.txt,w')
fichero.write('Procedimiento monitorizar')

fichero.write('\n'+'Informacién guardada en file: Variaciones_poblacion.txt')

fichero.write("\n'+format('Afo','*5")+format('Poblacién’,'*10")+format('Nacidos'"'* 15")+for
mat('Muertos’,"*15")\

+format('Muertos AP''*8"))
#convertir formato
foreleinx: #xcomienzaen 1

if ele ==1:

tira=("\n'+format(0,'<5")+"*"+format(poblacionBegin,'<10")+"*"+format(0,'<15")+"*"+forma
t(o’"<1 5Il)+ll*ll\

+format(0,"<7"))
fichero.write(tira)

tiem=ele

77

poblacion=Y1[ele-1]
nacidos=Y2[ele-1]
muertos=Y3[ele-1]

muertosAP=Y4[ele-1]

tira=("\n'+format(tiem,"'<5")+"*"+format(poblacion,'<10")+"*"+format(nacidos,"'<15")+"*"+f
ormat(muertos,"<15")+"*"\

+format(muertosAP,"<7"))
fichero.write(tira)
fichero.close
os.startfile("Variaciones_poblacion.txt","print")

return

def representar|DH(representar):
#Datos
datosDic=representar

xY1=[L[]

foriin datosDic:
#x and y must have same first dimension,
x.append(i) #en i estan las keys, que son enteros

Y1.append(datosDic[i])

eje_x3=list(x)

Y1=list(Y1)

#crea un objeto fig de la clase Figure

fig=plt.figure()

#primer dibujo-ax1-, de 2 fila(2) y dos columnas(2), colocado el primero(1)
ax1=fig.add_subplot(1,1,1)

ax1.plot(eje_x3,Y1)

78

plt.ylabel('IDH')

plt.show

def presentaDatosSalidaDiccionario(frase):
objeto=frase
raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="yellow')

raiz.title('Simulacioén Sociedad. Versién -1')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800", height="400")

miLabelA=Label(miframe, text="Diccionario de Activiodades del ph() solicitado")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew"

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():

raiz.destroy()

79

botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def presentaDatosSalida(objetoPh,frase1,frase2):
#utilizando Tkinter, tomo dos datos (afio de inicio y poblacidn inicial)
#Se los paso a los siguientes procedimientos
#podrian ampliarse los campos que se piden, habria més parametros de DISENO
getdatos=objetoPh #getDatos() del objeto dniPh1
objeto1=frase1 #diccionario de actividades del objeto dniPh2

objeto2=frase2 #tupla con los palp resultado de un select

raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="'yellow')

raiz.title('Simulacién Sociedad. Versién -10')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Actividades del ph solicitado")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)

miEntryText.grid(row=2,column=0)

80

miEntryText.insert(INSERT,objeto1)

miEntryText.insert(INSERT, ++++++++++++++PALP del afio
solicitado++++++++++++++++++++++++++++++")

miEntryText.insert(INSERT,objeto2)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew")

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonMS():
#Pongo los Entryes en la lista datoslniciales

messagebox.showinfo("Estado del Ph solicitado:", getdatos)

def funcionBotonSS():

raiz.destroy()

botonMostrar=Button(raiz,text="Estado del Ph solicitado:",command=funcionBotonMS)
botonMostrar.pack()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def presentaDatosSalidaHijos(frase):
objeto=frase
raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="yellow')

raiz.title('Simulacién Sociedad. Versién -1')

81

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Parejas con descendientes. Puede hacer scroll")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew")

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():
raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccion

def presentaDatosSalidaVHijos(frase):
objeto=frase
raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto

raiz.config(bg="'yellow')

82

raiz.title('Simulacion Sociedad. Version -1')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Varones con descendientes. Puede hacer scroll")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew")

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():
raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def presentaDatosSalidaMHijos(frase):
objeto=frase

raiz=tk.Tk() #creo una variable

83

raiz.geometry("800x500") #anchoy alto
raiz.config(bg="yellow')

raiz.title('Simulacion Sociedad. Versién -1')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Mujeres con descendientes. Puede hacer scroll")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew")

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():
raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def presentaDatosSalidaSDificil(frase):

84

objeto=frase

raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="'yellow')

raiz.title('Simulacion Sociedad. Version -1')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="ph con trabajo S-dificil")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew")

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():
raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

85

def presentaDatosSalidaFallecidos(frase):
objeto=frase
raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="yellow')

raiz.title('Simulacion Sociedad. Versién -1")

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Relacién de ph Fallecidos")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miEntryText=Text(miframe,width=60,height=20)
miEntryText.grid(row=2,column=0)

miEntryText.insert(INSERT,objeto)

miScrollVertical=tk.Scrollbar(miframe,command=miEntryText.yview)
miScrollVertical.grid(row=2,column=3,sticky="nsew"

miEntryText.config(yscrollcommand=miScrollVertical.set)

def funcionBotonSS():
raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

86

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def presentaPantallaMuda():

raiz=tk.Tk() #creo una variable
raiz.geometry("800x500") #anchoy alto
raiz.config(bg="yellow')

raiz.title('Simulacién Sociedad. Versién -1')

#Frame

miframe=Frame() #hecho el Frame, es trasparente
miframe.pack() #empaquetar
miframe.config(bg="red")

miframe.propagate(0)

miframe.config(width="800",height="400")

miLabelA=Label(miframe, text="Relacién no exhaustiva de graficos e informaciones
siguientes")

miLabelA.grid(row=1,column=0,sticky="w",padx=15,pady=15)

miLabelA=Label(miframe, text="1-Poblacidn, nacimientos, fallecimientos,Pib")
miLabelA.grid(row=2,column=0,sticky="w",padx=15,pady=15)
miLabelA=Label(miframe, text="2-indice de Gini")
miLabelA.grid(row=3,column=0,sticky="w",padx=15,pady=15)
miLabelA=Label(miframe, text="3-indice IDH")
miLabelA.grid(row=4,column=0,sticky="w",padx=15,pady=15)

miLabelA=Label(miframe, text="4-Ajustes de distribuciones de probailidad de ingresos
anuales")

miLabelA.grid(row=5,column=0,sticky="w",padx=15,pady=15)

def funcionBotonSS():

87

raiz.destroy()
botonSalir=Button(raiz,text="Salir",command=funcionBotonSS)

botonSalir.pack()

raiz.mainloop() #esta en un bucle ejecutandose

#debe ser la ultima instruccién

def graficoBarras(frase):
#En frase se le debe pasar un diccionario
valor=frase
class App(tk.Tk):
def __init__(self, valor):

super().__init_ ()

self.title('Demo de Tkinter & Matplotlib ')

prepare data

abscisas = valor.keys()

ordenadas = valor.values()

create a figure

figure = Figure(figsize=(12, 6), dpi=100)

create FigureCanvasTkAgg object
figure_canvas = FigureCanvasTkAgg(figure, self)
create axes

axes = figure.add_subplot()

create the barchart
axes.bar(abscisas,ordenadas)
axes.set_title('Paso de valor: un diccionario')
axes.set_ylabel('Ordenadas: valor poblacién’)

axes.set_xlabel('Abscisas: tiempo')

88

figure_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
app = App(valor)

app.mainloop()

def graficoBarrasPIB(frase):

#En frase se le debe pasar un diccionario
valor=frase
class App(tk.Tk):

def __init__(self, valor):

super().__init_ ()

self.title('Demo de Tkinter & Matplotlib ')

prepare data

abscisas = valor.keys()

ordenadas = valor.values()

create afigure

figure = Figure(figsize=(12, 6), dpi=100)

create FigureCanvasTkAgg object
figure_canvas = FigureCanvasTkAgg(figure, self)
create axes

axes = figure.add_subplot()

create the barchart
axes.bar(abscisas,ordenadas)
axes.set_title('Paso de valor: un diccionario')
axes.set_ylabel('Ordenadas: PIB anual')
axes.set_xlabel('Abscisas: tiempo')

figure_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)

89

app = App(valor)

app.mainloop()

90

-*- coding: utf-8 -*-
Created on Tue Jun 25 18:11:45 2024

ph_herramientas.py contiene aquellas funciones que son llamadas desde varios modulos
@author: invat

import mysqgl.connector

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

def selectBDNoWhere(sql1):
#hace unselect generico de una tabla
miCursor=miConexion.cursor()
sql=sql1
miCursor.execute(sql)
registro=miCursor.fetchall()
miConexion.commit()
miCursor.close()

return registro

def selectBD(sql1,valor1):
#hace un select de unatabla e incluye la clausula WHERE
miCursor=miConexion.cursor()
sql=sqll
valor=valor1
miCursor.execute(sql,valor)
registro=miCursor.fetchall()
miConexion.commit()
miCursor.close()

return registro

91

def insertBD(sql1,valor1):

#insertBD.llamadas +=1

#Crea, inserta VARIOS -many- registros en tabla
#tambien proporciona la ultima clave AUTOMATICA anadida (tema Hijos, descendencia)
miCursor=miConexion.cursor()

sql=sqll

valor=valor1

miCursor.executemany(sql,valor)
miCursor.execute(" select last_insert_id()")
idDesc=miCursor.fetchall()
idDescendiente=idDesc[0][0]
miConexion.commit()

miCursor.close()

return idDescendiente

def insertUno(sql1,valor1):
#insertBD.llamadas +=1
#inserta UN registro
miCursor=miConexion.cursor()
sqgl=sql1
valor=valor1
miCursor.execute(sql,valor)
miConexion.commit()
miCursor.close()

return

def updateBD(sql2,valor2):
#el update NO precisa un Select previo

miCursor=miConexion.cursor()

92

sqlUpdate=sql2

valorUpdate=valor2
miCursor.executemany(sqlUpdate,valorUpdate)
miConexion.commit()

miCursor.close()

return

def updateUno(sql2,valor2):
#el update NO precisa un Select previo
miCursor=miConexion.cursor()
sglUpdate=sql2
valorUpdate=valor2
miCursor.execute(sqlUpdate,valorUpdate)
miConexion.commit()
miCursor.close()

return

def recuperarTablaActividades():
#se cargan los 32 primeros registros de la tabla actividades
sqlselect="Select * from tercerbd.actividades "
regActi = selectBDNoWhere(sqlselect)

regis = [list(a) for a in regActi]

return regis

def recuperarRegistroSociedad(iteracion):
#recupera los valores de Sociedad correspondientes al ANO ACTUAL GLOBAL
#considerar que la edad de cada ph NO es el ANO ACTUAL GLOBAL
sqlselect="Select * from sociedad where tiempo=%s"
valorselect= (iteracion,) #para ser tupla un valor

registro=selectBD(sqlselect,valorselect)

93

regis=registro[0]

return regis

94

-*- coding: utf-8 -*-
Created on Sun Aug 11 08:21:20 2024
ph_salidas

@author: invat

from collections import Counter
from io import open

import matplotlib.pyplot as plt

import mysqgl.connector
import numpy as np

import os

import pandas as pd

import ph_herramientas
import ph_pantallasES

from scipy.stats import shapiro
from scipy.stats import gamma
from scipy.stats import erlang

import scipy.special as sps

import warnings

import random

from math import log

warnings.filterwarnings(‘ignore')

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

95

def extraeDatosTotales():
#No incluye RBU y excluye a menores de 18
fraselA =[]

sql2="SELECT ingrTotal FROM tercerbd.iteracionecon where (tiempo >0 and edad >=18
) 1

fraselA = ph_herramientas.selectBDNoWhere(sql2)

listTotal = [a[0] for a in fraselA]

#print('listTotal'listTotal)

return listTotal

def recuperarRegistroSociedadPIB():
#recupera los valores del campo pib de Sociedad de tods los afos
dic= {}
sqlselect="Select tiempo, pib from sociedad"
registro=ph_herramientas.selectBDNoWhere(sqlselect)
for ain registro:
dic[a[0]] = int(a[1])

return dic

def phTrabajoSDificil(nombrePh):
#explora los ph() vivos (los muertos han sido borrados!) que tienen trabajo= S-dificil
#No asigna, es para representar
listaSDificil=[]
for dniin nombrePh:
objeGene=nombrePh.get(dni)
#if (objeGene is not None):
if objeGene.situlaboposi ==
listaSDificil.append(dni)

return listaSDificil

def dibuEspaFase(etiquetas, valores):

96

#ChatGPT

Creamos el grafico
plt.figure(figsize=(8, 5))
plt.plot(etiquetas, valores, marker='o')
Anadimos titulos y etiquetas
plt.title('Espacio de Fases de un ph(dni)')
plt.xlabel('Intencionalidad')
plt.ylabel('Palp)

plt.grid()

Mostramos el grafico

plt.show()

return

def histoVa3Va9():
#dibuja histogramas de Va3 y Va9
def extraeVa3Va9():

#sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

sql2='SELECT sumava3, sumava9 FROM tercerbd.iteracionecon where tiempo>0"'
fraseVa3Va9=ph_herramientas.selectBDNoWhere(sql2)

return fraseVa3Va9

sumaVa3 =[]

sumaVa9 =[]

reg = extraeVa3Va9()

foriteminreg:
sumaVa3.append(item[0])

sumaVa9.append(item[1])

plt.hist(sumaVag3, 50, density=True)

plt.title("Histograma Va3")

97

plt.show()

plt.hist(sumaVa9, 50, density=True, color ='r")
plt.title("Histograma Va9")
plt.show()

return

def esGaussiana():

def extraeDatosG():
#sale uns lista con TODOS los datos ingrxTrab; no se distingue por iteracion
fraselA =[]
lista =]

sql2='SELECT ingrxTrab FROM tercerbd.iteracionecon where (tiempo >0 and (18 <=
edad <65) and ingrxTrab > 0) order by ingrxTrab'

fraselA=ph_herramientas.selectBDNoWhere(sql2)

#frase IA es una lista de tuplas: iteracion,ingresos anual (0jo por trabajo) de esa
persona

foriin fraselA:
lista.append(i[0])

return lista

def extraeDatosAnual():

#frase IA es una lista de tuplas: iteracion,ingresos anual (ojo por trabajo: ingrxTrab) de
esa persona

#forma un diccionario de listas. A cada lista se le aplica el test de Shapiro
fraselA =]

lista=1]

Key =]

Value =]

dic={}

98

#sale un perfecto diccionario de listas de ingresos mayores que cero y en edad de
trabajar

sql2='SELECT tiempo, ingrxtrab FROM tercerbd.iteracionecon where tiempo >0 and
ingrxTrab > 0 order by tiempo, ingrxTrab '

fraselA=ph_herramientas.selectBDNoWhere(sql2)
for ain fraselA:
IKey.append(a[0])
Value.append(a[1])
#tenemos la lista de tuplas como dos listas
iterA = iter(lKey)
siguienteA = next(iterA)
iterDato = iter(lValue)
siguienteDato = next(iterDato)
lista =]
for item in Key:
try:

siguienteA = next(iterA)

lista.append(siguienteDato)

if item != siguienteA:

dic[item] = lista
lista =[]

else:

pass
siguienteDato = next(iterDato)
except Stoplteration:
lista.append(siguienteDato)

dic[item] = lista

return dic

99

defingresosEsGaussiana(valores):
#Diccionario a lista
ssN=0
nnN=0
valores = valores
Shapiro-Wilk
stat, p = shapiro(valores)
Interpretacion
alpha =0.05
if p>alpha:
ssN +=1
else:
nnN +=1

return ssN,nnN

def esGaussianaGT():

#Gran Total: todos los ingrxTrab de todos los ph() en todas las iteraciones

lista =[]

#datos x afios

valores = extraeDatosG()

#veamos si ingresos sigue una distribucién gaussiana

r1 = sorted(valores)

forainri:
#ingresos.-Divido adaptar datos a escala
lista.append(round(a/10_000,2))

#test de normalidad de Sapiro

ssN,nnN=ingresosEsGaussiana(lista)

100

print('La muestra parece Gaussiana o Normal, en el siguiente nium de ocasiones:
'ssN)

print('La muestra NO parece Gaussiana o Normal: ', nnN,' veces')

return lista

def esGaussianaAnual(iteracion,valores):

#Anual: todos los ingrxTrab de todos los ph() en cada iteracion

lista =[]

#datos x afios

iteracion = iteracion

valores = valores

#veamos si ingresos sigue una distribucién gaussiana

r1 =sorted(valores)

forainr1:
#ingresos.-Divido adaptar datos a escala
lista.append(round(a/10_000,2))

#test de normalidad de Sapiro

ssN,nnN=ingresosEsGaussiana(lista)

print('La muestra parece Gaussiana o Normal, en el siguiente num de ocasiones:
"ssN)

print('La muestra NO parece Gaussiana o Normal: ', nnN,' veces')

return lista

#MAIN esGaussiana

print('Se consideran todos los ingrxTrab de todos los ph() en todas las iteraciones: Gran
Total')

lista = esGaussianaGT()

101

plt.hist(lista, 50, density=True)

plt.title("Histograma ingrxTrab: Gran Total")

plt.show()

print('Se genera un grafico por cada iteracién: todos los ingrxTrab de todos los ph()")

dic = extraeDatosAnual()

print(dic.keys())

foritem in dic:
lista = esGaussianaAnual(item, dic[item])
plt.hist(lista, 50, density=True)
plt.title("Histograma ingrxTrab por iteracion: ")
plt.show()

return

def dibujoGammasObtenidas():
#tomado de Gamma-vueltas.py
print(' Va a dibujarse las distribuciones Gamma que corresponden a los valores')
print (' de Alfa y Beta calculados y almacenados en la tabla Sociedad')

print('"En el punto anterior, el histograma se calcula por random coherente con Alfas y
Betas')

print('Se toman los valores de x generados y se ajusta una Gamma, obteniendose Alfasy
Betas')

print('El proceso parece coherente')

print('No ocurre lo mismo cuando se obtienen los valores de x de los ingresos generados
por HOSS (V.-7)")

def dibujoGammas4Casos():

def extraeDatos():#ingresos anuales de cada ph()

#sale un perfecto diccionario de listas de ingresos mayores que ceroy en edad de
trabajar

sql2='SELECT tiempo, ingrxTrab FROM tercerbd.iteracionecon where (tiempo >0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

102

fraselA=ph_herramientas.selectBDNoWhere(sql2)
dic=listaTuplAListEspecial(fraselA)

return dic

def listaTuplAListEspecial(lista0):
#convierto la lista de tuplas en diccionario de listas de valores mayor que cero
W4 =1]
dic={}
clave =1
reg=lista0
regis = [list(a) for a in reg]
regis.append(['*\,*'])
for elemento in regis:
if elemento[0] == clave:
elemMO = (float(elemento[1])/1_000)
#print(elemMO0)
if elemMO0 >0:
lV4.append (elemMO)
else:
dic[clave] = V4
clave +=1
V4 =]

return dic

#MAIN

print(' Va a dibujarse las distribuciones Gamma que corresponden a los valores')

print (' de Alfa y Beta calculados con Datos Iniciales y almacenados en la tabla
Sociedad')

alfas =[]

103

betas =[]
shape1 =[]
scale1 =]
s=[]
anyo=0
#extrae alfas y betas de Datos Iniciales
sql1='Select alfa, idh FROM sociedad'
regis=ph_herramientas.selectBDNoWhere(sql1)
forain regis:
alfas.append(a[0])
betas.append(round(float(a[1]),2))
alfas.remove(0)

betas.remove(0)

itera = iter(betas) # creamos el iterador

for alfa in alfas:
anyo +=1
beta = next(itera)
#para dibujar Gamma: random su histograma

serie = np.random.gammafalfa, beta,1000) #1000 valores random

#dibujo
count, bins, ignored = plt.hist(serie, 50, density=True) #histoigrama

y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gammalalfa) * beta**alfa)) #formulka
distribucion Gamma Excel

plt.title('1°-Histograma afio: '+ str(anyo) + '.Ingresos random. Alfa/beta calculadas
Datos Iniciales')

plt.plot(bins, y, linewidth=2, color="r") # distribucién Gamma
plt.show()

#Siguiente Grafico; alfas, betas de Datos iniciales y serie datos de ingrxTrab en s
procedentes de dicc

104

dicc = extraeDatos()
for item in dicc:

s.append(dicc[item]) #s: ingrxTrab

#creamos el iteradory el siguiente elemento
iteral = iter(s)
iteraBeta = iter(betas)
anyo=0
for alfa in alfas:
anyo +=1
beta = next(iteraBeta)
s = next(itera1) #Lista con los ingresos anuales de cada ph()
#s debe see una lista

#dibuja histograma de ingresos y gamma de la calculadas (no ajustadas) segun
datos iniciales

count, bins, ignored = plt.hist(s, 50, density=True)

y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gammal(alfa) * beta**alfa)) # la formula
de la distribucion Gamma/Excel

plt.title("2°-Histograma ano: "+ str(anyo) + ".Ingresos reales. Alfa/beta calculadas
datos iniciales")

plt.plot(bins, y, linewidth=2, color='r')

plt.show()

#Tomemos alfas y betas obtenidas a partir de (.fit) de los ingresos: ingrxTrab
anyo=0
borraDicc =[]
serie1 = pd.Series(dicc)
foritemin seriel:
anyo +=1
#con la misma s generada: obtiene alfay beta ajustadas (.fit)
serie = pd.Series(item)

print('pd.item >>>>>>>>>>>>>>>>" serie)

105

media = serie.mean()
minimo = serie.min()
maximo = serie.max()

std = serie.std()

Imprimir los estadisticos basicos
print("Estadisticos basicos:")
print("Media:", media)
print("Minimo:", minimo)
print("Maximo:", maximo)
print("Desviacion estandar:", std)
#params = gamma.fit(serie) ; params es tupla: [0] es shape y [2] es scale
shape2, loc2, scale2 = gamma.fit(serie) # deberia alfa==shape2y beta==scale2
if shape2 >1:
shapel.append(round(shape2,2))
scalel.append(round(scale2,2))
else:
#los valores de shape1 <=0 dan un ajuste malo, creo
borraDicc.append(anyo)
print(f'Valores del AJUSTE Alfa {shape1}---- Beta {scale1}')
foritem in borraDicc:
print('Afios eliminados: |, item)

del dicc[item]

iteraKey = iter(dicc)
se repite el proceso de dibujo con las nuevas Alfa y Beta
itera = iter(scale1)

for alfa in shape1:

sig = next(itera)

106

beta = sig

s = np.random.gamma(alfa, beta,1000)

diccKey = next(iteraKey)

#valores de x: random adecuado a Alfay Beta del AJUSTE

#una lista de 1000 valores float

count, bins, ignored = plt.hist(s, 50, density=True)

y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa))

plt.title("3°-Histograma ingresos randomy alfa/beta del ajuste gamma.fit de
ingrxTrab. Ano: " + str(diccKey))

plt.plot(bins, y, linewidth=2, color='r')
plt.show()

#usando las alfay betas procedentes de (.fit) se usan datos de sserie1 (ingrxTrab) en
vez de random

serie2 = pd.Series(dicc)
itera2 = iter(serie2)
iteraBeta = iter(scale1)
for alfa in shape1:

beta = next(iteraBeta)

try:

s = next(itera2)
except:

Stoplteration
#s debe see una lista

#dibuja histograma de ingresos y gamma de la calculadas (no ajustadas) segun
datos iniciales

count, bins, ignored = plt.hist(s, 50, density=True)

y = bins**(alfa-1) * ((np.exp(-bins/beta))/ (sps.gamma(alfa) * beta**alfa)) # la formula
de la distribucién Gamma/Excel

plt.title("4°-Histograma ingresos reales y alfa/beta del ajuste gamma.fit de
ingrxTrab")

plt.plot(bins, y, linewidth=2, color='"r")

plt.show()

107

#time.sleep(1) #pausa de un segundo

#Erlang; todos los ingrxTrab independientemente del afno
ingresos =s

#histograma

#Crear el histograma:

plt.hist(ingresos, bins=15, density=True, alpha=0.6, color='g/, label="Histograma de
Ingresos')

Estimar los parametros de la distribucién de Erlang

k, loc, scale = erlang.fit(ingresos, floc=0) # Ajustamos loc a0

Crear un rango de valores para el grafico
x = np.linspace(min(ingresos), max(ingresos), 100)

pdf = erlang.pdf(x, k, loc=loc, scale=scale)

Graficar la distribucion de Erlang ajustada

plt.plot(x, pdf, 'r-, lw=2, label="Ajuste Erlang')

#Personalizar y mostrar el gréafico:
plt.title('Histograma de Ingresos y Ajuste de Erlang')
plt.xlabel('Ingresos')

pltylabel('Densidad’)

plt.legend()

plt.grid()

plt.show()

return

dibujoGammas4Casos()

108

return

def imprimirSociedad():
#lmprime parte de tabla Sociedad
pib,ingresos,idh,gini,alfa=0.0,0.0,0.0,0.0,0.0
#tomo datos de la aplicacién ph()
sgl1="Select tiempo,poblacion,pib,ingrTotal,idh,gini,alfa FROM sociedad'
regis=ph_herramientas.selectBDNoWhere(sql1)
r1={]
fichero=open('pibIngIDHGini.txt,w')
fichero.write('Procedimiento imprimirSociedad’)

fichero.write("\n'+'Informacién guardada en file: pibIngIDHGini.txt")

fichero.write("\n'+format('Afo'"*5")+format('Poblacién’'*10")+format('PIB."'*15")+format(’l
ngresos'"*15")\

+format('Gini(G),"'*8")+format('Alfa(G*20) '*10")+format('IDH'*8")+format('Beta
I,lll\8l|))

#convertir formato

forainregis:
r1.append(a[0])
r1.append(a[1])
r1.append(a[2])
r1.append(a[3])
r1.append(a[4])
r1.append(a[5])
r1.append(a[6])
tiem=a[0]
poblacion=a[1]
if int(poblacion) < 20:

break

pib=a[2]

109

ingresos=a[3]
idh=a[4]

beta=idh #IDH esta cerca de 1; igualdad implicaria trabajar con Gamma
estandarizada

gini=a[5]

alfa=a[6]

tira="\n'+format(tiem,"<5")+"*"+format(poblacion,'<10")+"*"+format(pib,'<15")+"*"+format
(ingresos,"<15")+"*"\

+format(gini,'<7")+"*"+format(alfa,'<7")+"*"+format(idh,'<7")+"*"+format(beta,"<7")

fichero.write(tira)
fichero.close
os.startfile("pibIngIDHGini.txt","print")

return regis

def listaTuplasAListasSE(lista0):
#convierto la lista de tuplas en lista de listas
reg=lista0
regis = [list(a) for a in reg]
return regis
def codificar(lista0):
#cada elemento de lista2 es un str
lista1=lista0
lista2=[]
lista2 = [str(item) foritemin lista1]

return lista2

def parejaHijos():
#recorrer la tabla nacery ver cuantos hijos tiene cada pareja que tiene al menos, un hijo
reg=[]

sgl1="Select idPadre,idMadre from nacer where idPadre != -1 and idMadre != -1'

110

reg=ph_herramientas.selectBDNoWhere(sql1)
listaListas=listaTuplasAListasSE(reg)

lista=codificar(listalListas)

ocurrencia=Counter(lista)

#Ocurrencia: es diccionario la lista [padre,madre] es clave y el valor es num hijos

return ocurrencia

def varonesHijos():
#trecorrer la tabla nacery ver cuantos hijos tiene cada varén
reg=[]
ocurrencia={}
sgl1="'Select idPadre from nacer where idPadre!= -1 and idMadre!= -1'
reg=ph_herramientas.selectBDNoWhere(sql1)
#convierto la lista de tuplas en lista de listas
listaListas=listaTuplasAListasSE(reg)
lista=codificar(listalListas)
ocurrencia=Counter(lista)

return ocurrencia

def mujeresHijos():
#recorrer la tabla nacery ver cuantos hijos tiene cada mujer
reg=[]
ocurrencia={}
sgl1="Select idMadre from nacer where idPadre!= -1 and idMadre!= -1’
reg=ph_herramientas.selectBDNoWhere(sql1)
#convierto la lista de tuplas en lista de listas
listaListas=listaTuplasAListasSE(reg)
lista=codificar(listalListas)
ocurrencia=Counter(lista)

return ocurrencia

111

def imprimirPH(ph):

#los datos de un ph() tomados de MySQL

#tabla nacer

fichero=open('imprimirPH.txtw')
fichero.write('Procedimiento imprimirPH.py')
fichero.write('\n'+'Informacion guardada en file: imprimirPH.txt' + "\n’)

tira = "\N'+'>>>>>>>>5>55>>>>5>>>>>>>>>>Tabla
NACer>>>>>>>5>>55>555555555555>5>5>>>5>>>'+ '\

fichero.write("\n'+"*DNI*Edad*IniAbs*Sexo*Falle*Intenc*IdFam*IdP*IdE*RieT*IdP*IdM*RT
ole**Col**Resili*Poten*AtraPers*'+'\n')

tira="

sql1='Select * FROM nacer where id=%s'
valor1=(ph,)
registro=ph_herramientas.selectBD(sql1,valor1)
regis = registro[0]

foritem in regis:

tira = tira +str(item) +'*'

fichero.write(tira)
tira="
#Linea de separacién

tira=
\N'+'>>>S>S>>>SSSS>SSSS5>SSSS>>>>>>teraCion>>>>>>>>>S>> >S5S SSSSSSSSSSS>>>>D!
+ I\nl

fichero.write(tira)

#tabla iteracion

tira="

112

fichero.write("\n'+'"*DNI*Tiempo*Actividad**Edad va0*
val*va2*va3*vad*vab*va6*va7*va8*va9*'+'\n')

sgl1="'Select * FROM iteracion where dni=%s and edad > 18 order by tiempo,actividad'
valor1=(ph,)
regis=ph_herramientas.selectBD(sql1,valor1)
foritem in regis:
tira = str(item)
tira="\n'+tira
fichero.write(tira)

tira="

#Linea de separacion

tira=
\N'+'>>>>>S>S>5>5>5>5>55>55>>>>>>>>Familig>>>>>>>>>>>>>5555555>5>>5>>5>5>5>>>>>> +
I\nl

fichero.write(tira)
#tabla organiza_miembros - Familia
tira="
sql1="SELECT * FROM tercerbd.organiza_miembrosfami where id_nacer = %s;"
valor1=(ph,)
regis=ph_herramientas.selectBD(sql1,valor1)
foritemin regis:

tira = str(item)

tira="\n'+tira

fichero.write(tira)

tira="
#Linea de separacion

tira=
\N'+'>>>>>>>>5>>5>>>>>>>>>>>Empresa>>>>>>>>>>>>>>>>>>>>> 5> 5555555555555
+ I\nl

fichero.write(tira)

113

#tabla organiza_miembros - Organizaciones (sea software, industria...)
tira="
sql2="SELECT * FROM tercerbd.organiza_miembros where id_nacer=%s ;"
valor2=(ph,)
regis=ph_herramientas.selectBD(sql2,valor2)
foriinregis:

tira = str(i)

tira="\n"+tira

fichero.write(tira)

tira="

fichero.close
#La siguiente linea imprime por impresora: 0jo que son varias A4!!

os.startfile("imprimirPH.txt","print")

return

def monitorizar(poblCont,poblacionBegin):

def moniCl():
#APLICACION al 'Histograma Coeficiente Intelectual poblacién'
pobl=[]
sql1="'SELECT coefilnte FROM tercerbd.nacer;'
pobl = ph_herramientas.selectBDNoWhere(sql1)
numeros = sorted([float(a[0]) for a in pobl])
creamos un histograma y pintamos
plt.hist(numeros, bins=10, density=True)
plt.xlabel("Valores CI")
plt.ylabel("Frecuencia")
plt.title("Histograma Coeficiente Intelectual poblacién")

plt.show()

114

return

def moniResi():
#APLICACION al 'Histograma Resiliencia poblacién'
pobl=[]
sql1="'SELECT resiliencia FROM tercerbd.nacer;'
pobl = ph_herramientas.selectBDNoWhere(sql1)
numeros = sorted([float(a[0]) for a in pobl])
creamos un histograma y pintamos
plt.hist(humeros, bins=10, density=True)
plt.xlabel("Valores resiliencia")
plt.ylabel("Frecuencia")
plt.title("Histograma Resiliencia poblacion”)
plt.show()

return

def moniPoten():
#Aplicacion a bins literales
'Histograma Potencial poblacion'
#grupos=sorted(['0-Bajo'/1-Medio'2-Altos''3-Malto'])
#print(grupos)
sql1='SELECT potencial FROM tercerbd.nacer;'
pobl = ph_herramientas.selectBDNoWhere(sql1)
numeros = ([(a[0]) for a in pobl])
plt.hist(numeros, bins=4, density=True)
Configurar el histograma
plt.xlabel('Potencial: Grupos')
plt.ylabel('Valores')
plt.title('Histograma Potencial poblacion’)
Mostrar histograma
plt.show()

return

115

def moniPobl():
ph_pantallasES.representarPobl(poblCont,poblacionBegin)
print(poblCont)
return

moniClI()

moniResi()

moniPoten()

moniPobl()

return

defvolcadoPh(nombrePh):

#comprueba escritura en todos los vivos ph() de POO de seis datos economicos

foriin nombrePh:
objeGene = nombrePh.get(i)
print(objeGene.palp) #en realidad los ahorros
print(objeGene.gastoAnyo)
print(objeGene.ingrxTrabB)
print(objeGene.plusProductividad)
print(objeGene.ingrxTrab)
print(objeGene.ingrxRBU)
print('>>>)

return

Funcién Llamada desde ph_principal
def tratamientoDatos(nombrePh, datosReprPoblPib,poblCont,poblacionBegin):
#Utilizado Ingresos Anuales para ver si es Gaussianay para graficos Gamma

#extraeDatos,
listaTuplAListEspecial,ingresosAnualesEsGaussiana,ingAnualHistoGamma,

#y para acabar: MAIN de Ingresos Anuales, en Tratamiento de datos

#Por cada iteracion un grafico de Ingresos Anuales (IA)

116

nombrePh=nombrePh
datosReprPoblPib = datosReprPoblPib
poblCont = poblCont
def extraeDatos():

fraselA =]

#sale un perfecto diccionario de listas de ingresos mayores que ceroy en edad de
trabajar

sql2="SELECT tiempo, ingrxTrab FROM tercerbd.iteracionecon where (tiempo > 0 and
(18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

fraselA=ph_herramientas.selectBDNoWhere(sql2)
dic=listaTuplAListEspecial(fraselA)

return dic

def listaTuplAListEspecial(lista0):
#convierto la lista de tuplas en diccionario de listas de valores mayor que cero
V4 =1]
dic={}
clave =1
reg=lista0
regis = [list(a) for a in reg]
regis.append(['*\,*'])
for elemento in regis:
if elemento[0] == clave:
elemMO = float(elemento[1])/10_000
if elemMO0 >0:
V4.append (elemMO0)
else:
dic[clave] = V4
clave +=1
W4 =1]

return dic

117

def diccionarioUltimo(dniPh2):
sqgl ="SELECT max(tiempo) FROM tercerbd.iteracionecon where dni = %s;'
valor = (dniPh2,)
frase=ph_herramientas.selectBD(sql,valor)

frase = frase[0][0]

sql1='Select * from iteracionecon where dni=%s and tiempo=%s'
valor1=(dniPh2,frase)
frase1=ph_herramientas.selectBD(sql1,valor1)

return frase1

def diccEspaFase(dniPh3):
sql1='Select intenciona,palp from iteracionecon where dni=%s order by tiempo'
valor1=(dniPh3,)

frase3=ph_herramientas.selectBD(sql1,valor1)

return frase3

def palpVivosAnyo(anyo):
sql2="Select sum(palp) from iteracionecon where tiempo = %s "
valor2=(tiempoSolicitado,) #ha de ser una tupla

frase2=ph_herramientas.selectBD(sql2,valor2)

frase2 = (frase2[0][0])

return frase2

def ingresosAnualesEsGaussiana(valores):
#Diccionario a lista
ssN=0
nnN=0

valores =valores

118

Shapiro-Wilk

stat, p = shapiro(valores)

Interpretacion

alpha=0.05

if p>alpha:
#print ('La muestra parece Gaussiana o Normal (no se rechaza la hipétesis nula HO)")
ssN +=1

else:
#print ('La muestra NO parece Gaussiana o Normal(se rechaza la hipétesis nula HQ'")
nnN +=1

return ssN,nnN

def HAlfaBetaFichero():

#Por cada iteracion un grafico de Ingresos Anuales (IA)
dic={}

i=1

#datos ingrxTrab x afios

dic = extraeDatos() #extrae ingrxTrab por cada iteracion

#claveMax = valorMax[0][0]

Creamos un archivo PDF con PdfPages

#os.chdir('C:/Users/invat/MisDocumentos/A_ProyectoPython/Proyecto Python ph-7')

regSociedad = imprimirSociedad()
print('regSociedad--,regSociedad)

garbage = open('garbage.txt,w')

fichero = open ('HingrAnyo.txt',w')
fichero.write("\n'+'Informacién guardada en file: HIngrAnyo.txt')

fichero.write('\n'+'lteracion--Alfa,beta de Ajuste(fit)--Alfa,beta usando Datos Iniciales')

foriindic:

119

tira="
lista=1]
shape =0.00
scale =0.00

listaValues = (dic[i])
listaValues = sorted(listaValues)
r1 = listaValues
forainr1:
#ingresos.-Divido adaptar datos a escala
ifa>0:
#lista.append(round(float(a)/10_000,2))
listaBis = round(log(a),2)
lista.append(listaBis)
Convertir el diccionario en una serie de pandas
try:
serie = pd.Series(lista,dtype=float)
except ValueError:
continue
#ChatGPT

2. Ajustar una distribucién gamma a los datos

try:

shape, loc, scale = gamma.fit(serie) # floc=0---Forzar loc a 0 para un mejor ajuste

except ValueError :
continue

#para el fichero de texto

alfa = str(round(shape,2))

beta = str(round(scale,2))

if regSociedad[i][6] != None:

120

alfa2 = str(round(regSociedadli][6],2))

beta2 = str(round(regSociedad[i][4],2))

else:
alfa2 ="'AAA'
beta2 = 'BBB'

alfa22 = str(round((regSociedad[i][6]/20),2))

tira="\n'+format(str(i),'<5")+" ** "+format(alfa,'<5")+" ** "+format(beta,’'<5")+"
*exkekesk rformat(alfa2,’<5")+"("\

+format(alfa22,'<5") +") **"+format(beta2,"<5")
print('TIRA-------- \tira)

fichero.write (tira)

i+=1

fichero.close()
os.startfile('"HIngrAnyo.txt','print')

#os.remove('HIngrAnyoAlfaBeta.txt')

return

#MAIN tratamientoDatos()

#peticidon de datos para hacer algunas Salidas. Utilizo el mismo mecanismo en todas

121

datosSalida=ph_pantallasES.capturaDatosSalida()
#el INT asegura de pasar en el get un entero
dniPh1=int(datosSalida[0]) #Elija un 'ph' valido para conocer su estado

dniPh2=int(datosSalida[1]) #lija un 'ph' valido para conocer su ultimo estado de
Actividades

tiempoSolicitado=int(datosSalida[2]) #Para un afio concreto, ¢cual es el palp de los
vivos?"

dniPh3 = int(datosSalida[3])

#Respuesta segunda pregunta

objeto=nombrePh.get(dniPh1)

if objeto !=None:
objetoPh=objeto.getDatos()
imprimirPH(dniPh1)

else:

objetoPh="Ha fallecido’

#obtenemos el ULTIMO diccionario del ph solicitado:dniPh2
frase1 = diccionarioUltimo(dniPh2)
ph_pantallasES.presentaDatosSalidaDiccionario(frase1)

if objeto !=None:

print('Actividades de ph() '+str(dniPh2),objeto.miDicPh)

#obtenemos el palp anual de los vivos
frase2 = palpVivosAnyo(tiempoSolicitado)

ph_pantallasES.presentaDatosSalida(objetoPh,frase1, frase2)

#espacio de fases del dniPh3
foriinrange(1,11):
azar = random.randint(1,dniPh3)
etiquetas =[]
valores =]

dniPh3 = dniPh3ifi == 1 else azar

122

frase3 = diccEspaFase(dniPh3) #frase3 es un diccionario del tipo intenciona:palp
foritem in frase3:

etiquetas.append ((item[0]))

valores.append ((item[1]))

dibuEspaFase(etiquetas,valores)

#otras recuperaciones NO solicitadas.

#forma de operar: def calcula la frase y pantalla la imprime

#num hijos por la misma pareja

frase=parejaHijos()

ph_pantallasES.presentaDatosSalidaHijos(frase)

#num hijos por varén

frasev=varonesHijos()

ph_pantallasES.presentaDatosSalidaVHijos(frasev)

#num hijos por mujer

frasem=mujeresHijos()

ph_pantallasES.presentaDatosSalidaMHijos(frasem)

#quienes han logrado trabajo S-dificil

fraseSDificil=phTrabajoSDificil(nombrePh)

ph_pantallasES.presentaDatosSalidaSDificil(fraseSDificil)

#relacion de fallecidos

sql1="SELECT id,edad FROM tercerbd.nacer where fallecido ='S' order by id"

record=ph_herramientas.selectBDNoWhere(sql1)

ph_pantallasES.presentaDatosSalidaFallecidos(record)

ph_pantallasES.presentaPantallaMuda()

#otras informaciones NO solicitadas

#preparo para hacer grafico barras poblacion solamente

datos={}

for ain datosReprPoblPib:
datos[a]=datosReprPoblPib[a][0]

ph_pantallaskES.graficoBarras(datos)

123

#preparo para hacer grafico barras PIB solamente
diccionario = {}
diccionario = recuperarRegistroSociedadPIB()
print(diccionario)
ph_pantallasES.graficoBarrasPIB(diccionario)
#Monitorizar ClI, Resiliencia...de la poblacién
monitorizar(poblCont,poblacionBegin)
#representar IDH
representar={}
sql1="SELECT tiempo, idh FROM tercerbd.sociedad order by tiempo'
fraselDH=ph_herramientas.selectBDNoWhere(sql1)
fraselDH1=listaTuplasAListasSE(fraselDH)
foriinfraselDH1:

representar[i[0]]=i[1]
ph_pantallasES.representarIDH(representar)
#dibuja histogramas de Va3 y Va9
histoVa3Va9()
mira si los ingresos anuales o totales es gaussiana

esGaussiana()

##imprime de tabla sociedad, relacion del alfas beta, x datos iniciales, y alfas,beta por
ajuste de ingresos

dibujoGammasObtenidas()

#'lteracion--Alfa,beta de Ajuste(fit)--Alfa,beta usando Datos Iniciales'
HAlfaBetaFichero()

#comprueba escritura en todos los VIVOS ph() de POO de seis datos economicos
volcadoPh(nombrePh)

return

124

-*- coding: utf-8 -*-
Created on 24/6/24
ph-seleDist

Tomado del articulo 'Ajuste y seleccion de distribuciones con Python' de Joaquin Amat
Rodrigo

Realizo minimas y escasas adaptaciones para cargar y preparar mis datos

@author: invat

import matplotlib.pyplot as plt

import mysqgl.connector

import numpy as np

from scipy import stats

import ph_herramientas

#from ph_herramientas import selectBDNoWhere
import pandas as pd

import inspect

import warnings

warnings.filterwarnings(‘ignore')

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

global resultados

def datoslngrGast():

#sql1 = SELECT tiempo, sum(va4), sum(va5) FROM tercerbd.iteracionecon group by
tiempo

#sql1='Select ingrxTrab,gastoanyo FROM tercerbd.iteracionecon where tiempo > 0'

125

sql1 ='SELECT ingrxTrab, gastoanyo FROM tercerbd.iteracionecon where (tiempo >0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

regis = ph_herramientas.selectBDNoWhere(sql1)

delregis[0]

r2=1J]

for ainregis:
#ingresos / gastos.-Divido adaptar datos a escala
r1.append(round(float(a[0])/10_000,2))
#gastos.- Divido
r2.append(round(float(a[1])/10_000,2))

return r1,r2

def seleccionar_distribuciones(familia='realplus', verbose=True):
Esta funcion selecciona un subconjunto de las distribuciones disponibles

en scipy.stats

Parameters

familia : {'realall) 'realline’, 'realplus’, 'realOto1’, 'discreta'}
realall: distribuciones de la familia “realline”™ + "realplus”
realline: distribuciones continuas en el dominio (-inf, +inf)
realplus: distribuciones continuas en el dominio [0, +inf)
realOto1: distribuciones continuas en el dominio [0,1]

discreta: distribuciones discretas

verbose : bool
Si se muestra informacion de las distribuciones seleccionadas

(the default “True).

126

Returns
distribuciones: list

listado con las distribuciones (los objetos) seleccionados.

Raises
Exception
Si “familia” es distinto de 'realall), 'realline’, 'realplus’, 'realOto1’,

o 'discreta’.

Las distribuciones levy_stable y vonmises han sido excluidas por el momento.

distribuciones = [getattr(stats,d) for d in dir(stats) \

if isinstance(getattr(stats,d), (stats.rv_continuous, stats.rv_discrete))]

exclusiones =['levy_stable', 'vonmises', 'studentized_range'/chi2']
distribuciones = [dist for dist in distribuciones if dist.name not in exclusiones]
#Delimito desde cero
dominios ={

'realall’ : [-np.inf, np.inf],

'realline': [np.inf,np.inf],

'realplus': [0, np.inf],

'realOto1': [0, 1],

'discreta': [None, None],

127

distribucion =]
tipo =[]
dominio_inf =]

dominio_sup =[]

for dist in distribuciones:
distribucion.append(dist.name)
tipo.append(np.where(isinstance(dist, stats.rv_continuous), 'continua’, 'discreta'))
dominio_inf.append(dist.a)

dominio_sup.append(dist.b)

info_distribuciones = pd.DataFrame({
'distribucion': distribucion,
'tipo': tipo,
'dominio_inf': dominio_inf,
'‘dominio_sup': dominio_sup

)

info_distribuciones = info_distribuciones \
.sort_values(by=['dominio_inf', '"dominio_sup'])\

.reset_index(drop=True)

if familia in ['realall), 'realline’, 'realplus’, 'realOto1']:
info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='continua’]
condicion = (info_distribuciones['dominio_inf'] == dominios[familia][0]) &\
(info_distribuciones['dominio_sup'] == dominios[familia][1])

info_distribuciones = info_distribuciones[condicion].reset_index(drop=True)

if familia in ['discreta']:

info_distribuciones = info_distribuciones[info_distribuciones|['tipo']=='discreta']

128

seleccion = [dist for dist in distribuciones \

if dist.name in info_distribuciones['distribucion'].values]

if verbose:
Print("--mmmmmmmmmmm oo s ")
print(" Distribuciones seleccionadas ")
PNt (" -mmmmmmmm e m oo s ")

with pd.option_context('display.max_rows', None, 'display.max_columns', None):

print(info_distribuciones)

return seleccion

def comparar_distribuciones(texto,x, familia='realplus’, ordenar="aic', verbose=True):
Esta funcion seleccionay ajusta un subconjunto de las distribuciones
disponibles en scipy.stats. Para cada distribucion calcula los valores de

Log Likelihood, AIC y BIC.

Parameters
x : array_like

datos con los que ajustar la distribucién.

familia : {'realall’, 'realline’, 'realplus’, 'realOto1', 'discreta'}
realall: distribuciones de la familia “realline™ + “realplus”
realline: distribuciones continuas en el dominio (-inf, +inf)
realplus: distribuciones continuas en el dominio [0, +inf)
realOto1: distribuciones continuas en el dominio [0,1]

discreta: distribuciones discretas

129

ordenar : {'aic', 'bic'}

criterio de ordenacidon de mejor a peor ajuste.

verbose : bool
Si se muestra informacion de las distribuciones seleccionadas

(the default “True).

Returns
resultados: data.frame
distribucion: nombre de la distribucion.
log_likelihood: logaritmo del likelihood del ajuste.
aic: métrica AlC.
bic: métrica BIC.
n_parametros: numero de parametros de la distribucion de la distribucidn.

parametros: parametros del tras el ajuste

Raises

Exception
Si “familia® es distinto de 'realall, 'realline’, 'realplus’, 'realOto1’,

o 'discreta’.

distribuciones = seleccionar_distribuciones(familia=familia, verbose=verbose)

distribucion_=1]

130

log_likelihood_=T]
aic_=1]
bic_=[]
n_parametros_ =[]

parametros_ =[]

for i, distribucion in enumerate(distribuciones):

print(f"{i+1}/{len(distribuciones)} Ajustando distribucion: {distribucion.name}")
try:
parametros = distribucion.fit(data=x)
nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \
if not p=='x'] + ["loc","scale"]
parametros_dict = dict(zip(nombre_parametros, parametros))
log_likelihood = distribucion.logpdf(x, *parametros).sum()
aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

distribucion_.append(distribucion.name)
log_likelihood_.append(log_likelihood)
aic_.append(aic)

bic_.append(bic)
n_parametros_.append(len(parametros))

parametros_.append(parametros_dict)

resultados = pd.DataFrame({
'distribucion': distribucion_,
'log_likelihood': log_likelihood_,
‘aic': aic_,
'bic': bic_,

'n_parametros': n_parametros_,

131

'parametros': parametros_,

resultados = resultados.sort_values(by=ordenar).reset_index(drop=True)
print ('resultados---\resultados)

except Exception as e:
print(f"Error al tratar de ajustar la distribucién {distribucion.name}")
print(e)

print("")

return resultados

def plot_distribucion(texto, x, nombre_distribucion, ax=None):

Esta funcion superpone la curva de densidad de una distribucion con el

histograma de los datos.

Parameters

x : array_like

datos con los que ajustar la distribucidn.

nombre_distribuciones : str

nombre de una de las distribuciones disponibles en " scipy.stats .

Returns

resultados: matplotlib.ax

grafico creado

distribucion = getattr(stats, nombre_distribucion)

parametros = distribucion.fit(data=x)

nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

if not p=="x'] + ["loc","scale"]

parametros_dict = dict(zip(nombre_parametros, parametros))

log_likelihood = distribucion.logpdf(x, *parametros).sum()

aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

x_hat = np.linspace(min(x), max(x), num=1000)

y_hat = distribucion.pdf(x_hat, *parametros)

if axis None:

fig, ax = plt.subplots(figsize=(7,4))

ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)
ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5);
ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)
ax.set_title('Ajuste distribucion '+texto)

ax.set_xlabel('x")

133

ax.set_ylabel('Densidad de probabilidad')

ax.legend();

print(f"Distribucion: {distribucion.name}")
print(f"Dominio: {[distribucion.a, distribucion.b]}")
print(f"Parametros: {parametros_dict}")

print(f"Log likelihood: {log_likelihood}")

print(f"AlC: {aic}")
print(f"BIC: {bic}")
return ax

def plot_multiple_distribuciones(texto,x, nombre_distribuciones, ax=None):

Esta funcion superpone las curvas de densidad de varias distribuciones

con el histograma de los datos.

Parameters

X : array_like

datos con los que ajustar la distribucién.

nombre_distribuciones : list

lista con nombres de distribuciones disponibles en " scipy.stats ™.

Returns

134

resultados: matplotlib.ax

grafico creado

Raises

if axis None:

fig, ax = plt.subplots(figsize=(7,4))

ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5)

ax.plot(x, np.full_like(x, -0.01), |k, markeredgewidth=1)

ax.set_title('Ajuste distribuciones al histograma de line 332'+texto+' anuales totales')

ax.set_xlabel('x")

ax.set_ylabel('Densidad de probabilidad')

for nombre in nombre_distribuciones:

distribucion = getattr(stats, nombre)

parametros = distribucion.fit(data=x)

nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

if not p=='x'] + ["loc","scale"]

parametros_dict = dict(zip(nombre_parametros, parametros))

log_likelihood = distribucion.logpdf(x, *parametros).sum()

135

aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

x_hat = np.linspace(min(x), max(x), num=1000)
y_hat = distribucion.pdf(x_hat, *parametros)

ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

ax.legend();

return ax

def ajuste(serie,texto):
serie = serie
texto = texto

Ajuste y comparacion de distribuciones

resultados = comparar_distribuciones(texto,
x=serie.to_numpy(),
familia='realall),
ordenar='aic/,
verbose=False

)

resultados

fig, ax = plt.subplots(figsize=(8,5))

plot_distribucion(texto,

x=serie.to_numpy(),

nombre_distribucion=resultados['distribucion'][0],

136

ax=ax

fig, ax = plt.subplots(figsize=(8,5))

plot_multiple_distribuciones(texto,
x=serie.to_numpy(),
nombre_distribuciones=resultados['distribucion'][:4],
ax=ax
);

return

#MAIN CODIGO
def main():
ingr=1]
gast =[]

ingr,gast = datoslngrGast()

foritem in range(1,3):

comodin =[]

texto="

serie =]

comodin =ingr if item ==1 else gast
texto = 'Ingresos' if item ==1 else 'Gastos'
#testadisticos basicos

serie = pd.Series(comodin)

ajuste(serie, texto)

return

137

-*- coding: utf-8 -*-
Created on 24/6/24
ph-seleDist

Tomado del articulo 'Ajuste y seleccion de distribuciones con Python' de Joaquin Amat
Rodrigo

Realizo minimas y escasas adaptaciones para cargar y preparar mis datos

@author: invat

import matplotlib.pyplot as plt

import mysqgl.connector

import numpy as np

from scipy import stats

import ph_herramientas

#from ph_herramientas import selectBDNoWhere
import pandas as pd

import inspect

import warnings

warnings.filterwarnings(‘ignore')

miConexion=mysqgl.connector.connect(host="localhost",database="tercerbd", \

user="invat",password="jquintas49",auth_plugin="mysql_native_password")

global resultados

def datoslngrGast():

#sql1 = SELECT tiempo, sum(va4), sum(va5) FROM tercerbd.iteracionecon group by
tiempo

#sql1='Select ingrxTrab,gastoanyo FROM tercerbd.iteracionecon where tiempo > 0'

138

sql1 ='SELECT ingrxTrab, gastoanyo FROM tercerbd.iteracionecon where (tiempo >0
and (18 <= edad <65)) and ingrxTrab > 0 order by tiempo, ingrxTrab '

regis = ph_herramientas.selectBDNoWhere(sql1)

delregis[0]

r2=1J]

for ainregis:
#ingresos / gastos.-Divido adaptar datos a escala
r1.append(round(float(a[0])/10_000,2))
#gastos.- Divido
r2.append(round(float(a[1])/10_000,2))

return r1,r2

def seleccionar_distribuciones(familia='realplus', verbose=True):
Esta funcion selecciona un subconjunto de las distribuciones disponibles

en scipy.stats

Parameters

familia : {'realall) 'realline’, 'realplus’, 'realOto1’, 'discreta'}
realall: distribuciones de la familia “realline”™ + "realplus”
realline: distribuciones continuas en el dominio (-inf, +inf)
realplus: distribuciones continuas en el dominio [0, +inf)
realOto1: distribuciones continuas en el dominio [0,1]

discreta: distribuciones discretas

verbose : bool
Si se muestra informacion de las distribuciones seleccionadas

(the default “True).

139

Returns
distribuciones: list

listado con las distribuciones (los objetos) seleccionados.

Raises
Exception
Si “familia” es distinto de 'realall), 'realline’, 'realplus’, 'realOto1’,

o 'discreta’.

Las distribuciones levy_stable y vonmises han sido excluidas por el momento.

distribuciones = [getattr(stats,d) for d in dir(stats) \

if isinstance(getattr(stats,d), (stats.rv_continuous, stats.rv_discrete))]

exclusiones =['levy_stable', 'vonmises', 'studentized_range'/chi2']
distribuciones = [dist for dist in distribuciones if dist.name not in exclusiones]
#Delimito desde cero
dominios ={

'realall’ : [-np.inf, np.inf],

'realline': [np.inf,np.inf],

'realplus': [0, np.inf],

'realOto1': [0, 1],

'discreta': [None, None],

140

distribucion =]
tipo =[]
dominio_inf =]

dominio_sup =[]

for dist in distribuciones:
distribucion.append(dist.name)
tipo.append(np.where(isinstance(dist, stats.rv_continuous), 'continua’, 'discreta'))
dominio_inf.append(dist.a)

dominio_sup.append(dist.b)

info_distribuciones = pd.DataFrame({
'distribucion': distribucion,
'tipo': tipo,
'dominio_inf': dominio_inf,
'‘dominio_sup': dominio_sup

)

info_distribuciones = info_distribuciones \
.sort_values(by=['dominio_inf', '"dominio_sup'])\

.reset_index(drop=True)

if familia in ['realall), 'realline’, 'realplus’, 'realOto1']:
info_distribuciones = info_distribuciones[info_distribuciones['tipo']=='continua’]
condicion = (info_distribuciones['dominio_inf'] == dominios[familia][0]) &\
(info_distribuciones['dominio_sup'] == dominios[familia][1])

info_distribuciones = info_distribuciones[condicion].reset_index(drop=True)

if familia in ['discreta']:

info_distribuciones = info_distribuciones[info_distribuciones|['tipo']=='discreta']

141

seleccion = [dist for dist in distribuciones \

if dist.name in info_distribuciones['distribucion'].values]

if verbose:
Print("--mmmmmmmmmmm oo s ")
print(" Distribuciones seleccionadas ")
PNt (" -mmmmmmmm e m oo s ")

with pd.option_context('display.max_rows', None, 'display.max_columns', None):

print(info_distribuciones)

return seleccion

def comparar_distribuciones(texto,x, familia='realplus’, ordenar="aic', verbose=True):
Esta funcion seleccionay ajusta un subconjunto de las distribuciones
disponibles en scipy.stats. Para cada distribucion calcula los valores de

Log Likelihood, AIC y BIC.

Parameters
x : array_like

datos con los que ajustar la distribucién.

familia : {'realall’, 'realline’, 'realplus’, 'realOto1', 'discreta'}
realall: distribuciones de la familia “realline™ + “realplus”
realline: distribuciones continuas en el dominio (-inf, +inf)
realplus: distribuciones continuas en el dominio [0, +inf)
realOto1: distribuciones continuas en el dominio [0,1]

discreta: distribuciones discretas

142

ordenar : {'aic', 'bic'}

criterio de ordenacidon de mejor a peor ajuste.

verbose : bool
Si se muestra informacion de las distribuciones seleccionadas

(the default “True).

Returns
resultados: data.frame
distribucion: nombre de la distribucion.
log_likelihood: logaritmo del likelihood del ajuste.
aic: métrica AlC.
bic: métrica BIC.
n_parametros: numero de parametros de la distribucion de la distribucidn.

parametros: parametros del tras el ajuste

Raises

Exception
Si “familia® es distinto de 'realall, 'realline’, 'realplus’, 'realOto1’,

o 'discreta’.

distribuciones = seleccionar_distribuciones(familia=familia, verbose=verbose)

distribucion_=1]

143

log_likelihood_=T]
aic_=1]
bic_=[]
n_parametros_ =[]

parametros_ =[]

for i, distribucion in enumerate(distribuciones):

print(f"{i+1}/{len(distribuciones)} Ajustando distribucion: {distribucion.name}")
try:
parametros = distribucion.fit(data=x)
nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \
if not p=='x'] + ["loc","scale"]
parametros_dict = dict(zip(nombre_parametros, parametros))
log_likelihood = distribucion.logpdf(x, *parametros).sum()
aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

distribucion_.append(distribucion.name)
log_likelihood_.append(log_likelihood)
aic_.append(aic)

bic_.append(bic)
n_parametros_.append(len(parametros))

parametros_.append(parametros_dict)

resultados = pd.DataFrame({
'distribucion': distribucion_,
'log_likelihood': log_likelihood_,
‘aic': aic_,
'bic': bic_,

'n_parametros': n_parametros_,

144

'parametros': parametros_,

resultados = resultados.sort_values(by=ordenar).reset_index(drop=True)
print ('resultados---\resultados)

except Exception as e:
print(f"Error al tratar de ajustar la distribucién {distribucion.name}")
print(e)

print("")

return resultados

def plot_distribucion(texto, x, nombre_distribucion, ax=None):

Esta funcion superpone la curva de densidad de una distribucion con el

histograma de los datos.

Parameters

x : array_like

datos con los que ajustar la distribucidn.

nombre_distribuciones : str

nombre de una de las distribuciones disponibles en " scipy.stats .

Returns

resultados: matplotlib.ax

grafico creado

distribucion = getattr(stats, nombre_distribucion)

parametros = distribucion.fit(data=x)

nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

if not p=="x'] + ["loc","scale"]

parametros_dict = dict(zip(nombre_parametros, parametros))

log_likelihood = distribucion.logpdf(x, *parametros).sum()

aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

x_hat = np.linspace(min(x), max(x), num=1000)

y_hat = distribucion.pdf(x_hat, *parametros)

if axis None:

fig, ax = plt.subplots(figsize=(7,4))

ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)
ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5);
ax.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)
ax.set_title('Ajuste distribucion '+texto)

ax.set_xlabel('x")

146

ax.set_ylabel('Densidad de probabilidad')

ax.legend();

print(f"Distribucion: {distribucion.name}")
print(f"Dominio: {[distribucion.a, distribucion.b]}")
print(f"Parametros: {parametros_dict}")

print(f"Log likelihood: {log_likelihood}")

print(f"AlC: {aic}")
print(f"BIC: {bic}")
return ax

def plot_multiple_distribuciones(texto,x, nombre_distribuciones, ax=None):

Esta funcion superpone las curvas de densidad de varias distribuciones

con el histograma de los datos.

Parameters

X : array_like

datos con los que ajustar la distribucién.

nombre_distribuciones : list

lista con nombres de distribuciones disponibles en " scipy.stats ™.

Returns

147

resultados: matplotlib.ax

grafico creado

Raises

if axis None:

fig, ax = plt.subplots(figsize=(7,4))

ax.hist(x=x, density=True, bins=10, color="#3182bd", alpha=0.5)

ax.plot(x, np.full_like(x, -0.01), |k, markeredgewidth=1)

ax.set_title('Ajuste distribuciones al histograma de line 332'+texto+' anuales totales')

ax.set_xlabel('x")

ax.set_ylabel('Densidad de probabilidad')

for nombre in nombre_distribuciones:

distribucion = getattr(stats, nombre)

parametros = distribucion.fit(data=x)

nombre_parametros = [p for p in inspect.signature(distribucion._pdf).parameters \

if not p=='x'] + ["loc","scale"]

parametros_dict = dict(zip(nombre_parametros, parametros))

log_likelihood = distribucion.logpdf(x, *parametros).sum()

148

aic =-2 * log_likelihood + 2 * len(parametros)

bic =-2 * log_likelihood + np.log(x.shape[0]) * len(parametros)

x_hat = np.linspace(min(x), max(x), num=1000)
y_hat = distribucion.pdf(x_hat, *parametros)

ax.plot(x_hat, y_hat, linewidth=2, label=distribucion.name)

ax.legend();

return ax

def ajuste(serie,texto):
serie = serie
texto = texto

Ajuste y comparacion de distribuciones

resultados = comparar_distribuciones(texto,
x=serie.to_numpy(),
familia='realall),
ordenar='aic/,
verbose=False

)

resultados

fig, ax = plt.subplots(figsize=(8,5))

plot_distribucion(texto,

x=serie.to_numpy(),

nombre_distribucion=resultados['distribucion'][0],

149

ax=ax

fig, ax = plt.subplots(figsize=(8,5))

plot_multiple_distribuciones(texto,
x=serie.to_numpy(),
nombre_distribuciones=resultados['distribucion'][:4],
ax=ax
);

return

#MAIN CODIGO
def main():
ingr=1]
gast =[]

ingr,gast = datoslngrGast()

foritem in range(1,3):

comodin =[]

texto="

serie =]

comodin =ingr if item ==1 else gast
texto = 'Ingresos' if item ==1 else 'Gastos'
#testadisticos basicos

serie = pd.Series(comodin)

ajuste(serie, texto)

return

